Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle
- PMID: 13129524
- PMCID: PMC2839921
- DOI: 10.1016/s0020-7519(03)00142-5
Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle
Abstract
The life cycle of Leishmania alternates between two main morphological forms: intracellular amastigotes in the mammalian host and motile promastigotes in the sand fly vector. Several different forms of promastigote have been described in sandfly infections, the best known of these being metacyclic promastigotes, the mammal-infective stages. Here we provide evidence that for Leishmania (Leishmania) mexicana and Leishmania (Leishmania) infantum (syn. chagasi) there are two separate, consecutive growth cycles during development in Lutzomyia longipalpis sand flies involving four distinct life cycle stages. The first growth cycle is initiated by procyclic promastigotes, which divide in the bloodmeal in the abdominal midgut and subsequently give rise to non-dividing nectomonad promastigotes. Nectomonad forms are responsible for anterior migration of the infection and in turn transform into leptomonad promastigotes that initiate a second growth cycle in the anterior midgut. Subsequently, leptomonad promastigotes differentiate into non-dividing metacyclic promastigotes in preparation for transmission to a mammalian host. Differences in timing, prevalence and persistence of the four promastigote stages were observed between L. mexicana and L. infantum in vivo, which were reproduced in cultures initiated with lesion amastigotes, indicating that development is to some extent governed by a programmed series of events. A new scheme for the life cycle in the subgenus Leishmania (Leishmania) is proposed that incorporates these findings.
Figures
Similar articles
-
New insights into the developmental biology and transmission mechanisms of Leishmania.Curr Mol Med. 2004 Sep;4(6):601-9. doi: 10.2174/1566524043360285. Curr Mol Med. 2004. PMID: 15357211 Review.
-
Stage-specific adhesion of Leishmania promastigotes to sand fly midguts assessed using an improved comparative binding assay.PLoS Negl Trop Dis. 2010 Sep 7;4(9):e816. doi: 10.1371/journal.pntd.0000816. PLoS Negl Trop Dis. 2010. PMID: 20838647 Free PMC article.
-
Development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis.Am J Trop Med Hyg. 2012 Apr;86(4):606-12. doi: 10.4269/ajtmh.2012.11-0386. Am J Trop Med Hyg. 2012. PMID: 22492144 Free PMC article.
-
Distinct gene expression patterns in vector-residing Leishmania infantum identify parasite stage-enriched markers.PLoS Negl Trop Dis. 2020 Mar 3;14(3):e0008014. doi: 10.1371/journal.pntd.0008014. eCollection 2020 Mar. PLoS Negl Trop Dis. 2020. PMID: 32126078 Free PMC article.
-
Leishmania differentiation in natural and unnatural sand fly hosts.J Eukaryot Microbiol. 1993 Mar-Apr;40(2):196-206. doi: 10.1111/j.1550-7408.1993.tb04904.x. J Eukaryot Microbiol. 1993. PMID: 8461893 Review.
Cited by
-
Whole cell reconstructions of Leishmania mexicana through the cell cycle.PLoS Pathog. 2024 Feb 28;20(2):e1012054. doi: 10.1371/journal.ppat.1012054. eCollection 2024 Feb. PLoS Pathog. 2024. PMID: 38416776 Free PMC article.
-
The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis.Pharmaceutics. 2024 Feb 4;16(2):227. doi: 10.3390/pharmaceutics16020227. Pharmaceutics. 2024. PMID: 38399281 Free PMC article. Review.
-
Interactions between Leishmania parasite and sandfly: a review.Parasitol Res. 2023 Dec 6;123(1):6. doi: 10.1007/s00436-023-08043-7. Parasitol Res. 2023. PMID: 38052752 Review.
-
Disruption of Leishmania flagellum attachment zone architecture causes flagellum loss.Mol Microbiol. 2024 Jan;121(1):53-68. doi: 10.1111/mmi.15199. Epub 2023 Nov 27. Mol Microbiol. 2024. PMID: 38010644 Free PMC article.
-
Dual-target drugs against Leishmania donovani for potential novel therapeutics.Sci Rep. 2023 Oct 26;13(1):18363. doi: 10.1038/s41598-023-45448-x. Sci Rep. 2023. PMID: 37884555 Free PMC article.
References
-
- Borovsky D, Schlein Y. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med. Vet. Entomol. 1987;1:235–242. - PubMed
-
- Charlab R, Ribeiro JMC. Cytostatic effect of Lutzomyia longipalpis salivary gland homogenates on Leishmania parasites. Am. J. Trop. Med. Hyg. 1993;48:831–838. - PubMed
-
- Charlab R, Tesh RB, Rowton ED, Ribeiro JMC. Leishmania amazonensis: sensitivity of different promastigote morphotypes to salivary gland homogenates of the sand fly Lutzomyia longipalpis. Exp. Parasitol. 1995;80:167–175. - PubMed
-
- Dillon RJ, Lane RP. Influence of Leishmania infection on blood-meal digestion the sandflies Phlebotomus papatasi and P. langeroni. Parasitol. Res. 1993;79:492–496. - PubMed
-
- Handman E, Bullen DVR. Interaction of Leishmania with the host macrophage. Trends Parasitol. 2002;18:332–334. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
