Protein turnover and amino acid transport kinetics in end-stage renal disease

Am J Physiol Endocrinol Metab. 2004 Jan;286(1):E136-43. doi: 10.1152/ajpendo.00352.2003. Epub 2003 Sep 16.

Abstract

Protein and amino acid metabolism is abnormal in end-stage renal disease (ESRD). Protein turnover is influenced by transmembrane amino acid transport. The effect of ESRD and hemodialysis (HD) on intracellular amino acid transport kinetics is unknown. We studied intracellular amino acid transport kinetics and protein turnover by use of stable isotopes of phenylalanine, leucine, lysine, alanine, and glutamine before and during HD in six ESRD patients. Data obtained from amino acid concentrations and enrichment in the artery, vein, and muscle compartments were used to calculate intracellular amino acid transport and muscle protein synthesis and catabolism. Fractional muscle protein synthesis (FSR) was estimated by the precursor product approach. Despite a significant decrease in the plasma concentrations of amino acids in the artery and vein during HD, the intracellular concentrations remained stable. Outward transport of the amino acids was significantly higher than the inward transport during HD. FSR increased during HD (0.0521 +/- 0.0043 vs. 0.0772 +/- 0.0055%/h, P < 0.01). Results derived from compartmental modeling indicated that both protein synthesis (118.3 +/- 20.6 vs. 146.5 +/- 20.6 nmol.min-1.100 ml leg-1, P < 0.01) and catabolism (119.8 +/- 18.0 vs. 174.0 +/- 14.2 nmol.min-1.100 ml leg-1, P < 0.01) increased during HD. However, the intradialytic increase in catabolism exceeded that of synthesis (57.8 +/- 13.8 vs. 28.0 +/- 8.5%, P < 0.05). Thus HD alters amino acid transport kinetics and increases protein turnover, with net increase in protein catabolism.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Transport Systems / metabolism*
  • Amino Acids / metabolism*
  • Female
  • Humans
  • Kidney Failure, Chronic / metabolism*
  • Kidney Failure, Chronic / therapy*
  • Male
  • Middle Aged
  • Models, Biological
  • Proteins / metabolism*
  • Renal Dialysis*

Substances

  • Amino Acid Transport Systems
  • Amino Acids
  • Proteins