Atrial natriuretic factor: its (patho)physiological significance in humans

Kidney Int. 1992 May;41(5):1115-33. doi: 10.1038/ki.1992.172.


The first human studies using relatively high-doses of ANF revealed similar effects as observed in the preceding animal reports, including effects on systemic vasculature (blood pressure fall, decrease in intravascular volume), renal vasculature (rise in GFR, fall in renal blood flow), renal electrolyte excretion (rises in many electrolytes), and changes in release of a number of different hormones. Whether all these changes are the result of direct ANF effects or secondary to a (single) primary event of the hormone remains to be determined. Certainly, it has been proven that more physiological doses of ANF fail to induce short-term changes in many of these parameters leaving only a rise in hematocrit, natriuresis and an inhibition of the RAAS as important detectable ANF effects in humans. This leads us to hypothesize that ANF is a "natriuretic" hormone with physiological significance. The primary function in humans is to regulate sodium homeostasis in response to changes in intravascular volume (cardiac atrial stretch). Induction of excess renal sodium excretion and extracellular volume shift appear to be the effector mechanisms. The exact mechanism of the natriuresis in humans still needs to be resolved. It appears however, that possibly a small rise in GFR, a reduction in proximal and distal tubular sodium reabsorption, as well as an ensuing medullary washout, are of importance. The pathophysiological role of ANF in human disease is unclear. One may find elevated plasma irANF levels and/or decreased responses to exogenous ANF in some disease states. Whether these findings are secondary to the disease state rather than the cause of the disease remains to be resolved. Therapeutic applications for ANF, or drugs that intervene in its production or receptor-binding, seem to be multiple. Most important could be the antihypertensive effect, although areas such as congestive heart failure, renal failure, liver cirrhosis and the nephrotic syndrome cannot be excluded. Although the data that have been gathered to date allowed us to draw some careful conclusions as to the (patho)physiological role of ANF, the exact place of ANF in sodium homeostatic control must still be better defined. To achieve this, we will need more carefully designed low-dose ANF infusion, as well as ANF-breakdown inhibitor studies. Even more promising, however, is the potential area of studies open to us when ANF-receptor (ant)agonists become available for human use.

Publication types

  • Editorial

MeSH terms

  • Animals
  • Atrial Natriuretic Factor / pharmacology
  • Atrial Natriuretic Factor / physiology*
  • Edema / physiopathology
  • Humans
  • Hypertension / physiopathology
  • Kidney / drug effects
  • Kidney / physiology
  • Receptors, Atrial Natriuretic Factor
  • Receptors, Cell Surface / physiology


  • Receptors, Cell Surface
  • Atrial Natriuretic Factor
  • Receptors, Atrial Natriuretic Factor