Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 25;267(27):19521-8.

Transmembrane signaling by the human insulin receptor kinase. Relationship between intramolecular beta subunit trans- and cis-autophosphorylation and substrate kinase activation

Affiliations
  • PMID: 1326556
Free article

Transmembrane signaling by the human insulin receptor kinase. Relationship between intramolecular beta subunit trans- and cis-autophosphorylation and substrate kinase activation

A L Frattali et al. J Biol Chem. .
Free article

Abstract

To examine the role of intramolecular beta subunit trans- and cis-autophosphorylation in signal transduction, the vaccinia virus/bacteriophage T7 expression system was used to generate insulin holoreceptors composed of a kinase-defective half-receptor precursor (alpha beta A/K or alpha beta A/K.delta CT) and a kinase-active half-receptor precursor (alpha beta delta CT or alpha beta WT). In the alpha beta A/K-alpha beta delta CT hybrid insulin receptor, insulin stimulated a 20-fold increase in intramolecular beta subunit trans-phosphorylation, whereas cis-phosphorylation increased only 3-fold over the basal state. Similarly, in the alpha beta WT-alpha beta A/K.delta CT hybrid insulin receptor, insulin stimulated trans-phosphorylation approximately 30-fold and cis-phosphorylation only 3-fold over the basal state. Although cis-phosphorylation of the kinase-functional alpha beta half-receptor was observed within these hybrid receptor species, this was not sufficient to stimulate exogenous substrate kinase activity. These data demonstrate that insulin primarily activates an intramolecular beta subunit trans-phosphorylation reaction within the insulin holoreceptor and suggest that this reaction is necessary for activation of the holoreceptor. Furthermore, our results suggest a molecular basis for the dominant-negative phenotype observed in insulin-resistant patients possessing one kinase-defective insulin receptor allele.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources