Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus

J Virol. 1992 Dec;66(12):7136-45. doi: 10.1128/JVI.66.12.7136-7145.1992.

Abstract

The contribution of each of the seven asparagine-linked oligosaccharide side chains on the hemagglutinin of the A/Aichi/68 (X31) strain of influenza virus was assessed with respect to its effect on the folding, intracellular transport, and biological activities of the molecule. Twenty mutant influenza virus hemagglutinins were constructed and expressed, each of which had one or more of the seven glycosylation sites removed. Investigations of these mutant hemagglutinins indicated that (i) no individual oligosaccharide side chain is necessary or sufficient for the folding, intracellular transport, or function of the molecule, (ii) at least five oligosaccharide side chains are required for the X31 hemagglutinin molecule to move along the exocytic pathway to the plasma membrane, and (iii) mutant hemagglutinins having less than five oligosaccharide side chains form intracellular aggregates and are retained in the endoplasmic reticulum.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Biological Transport
  • Cell Line
  • DNA, Viral / genetics
  • DNA, Viral / metabolism
  • Erythrocytes / metabolism
  • Glycosylation
  • Hemagglutinin Glycoproteins, Influenza Virus
  • Hemagglutinins, Viral / chemistry*
  • Hemagglutinins, Viral / genetics
  • Hemagglutinins, Viral / metabolism*
  • Influenza A virus / genetics*
  • Influenza A virus / metabolism
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Protein Conformation
  • Protein Folding*
  • Protein Processing, Post-Translational
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / isolation & purification
  • Recombinant Proteins / metabolism
  • Simian virus 40 / genetics
  • Viral Envelope Proteins / chemistry*
  • Viral Envelope Proteins / genetics
  • Viral Envelope Proteins / metabolism*

Substances

  • DNA, Viral
  • Hemagglutinin Glycoproteins, Influenza Virus
  • Hemagglutinins, Viral
  • Recombinant Proteins
  • Viral Envelope Proteins