Na+ current densities and voltage dependence in human intercostal muscle fibres

J Physiol. 1992 Dec:458:85-97. doi: 10.1113/jphysiol.1992.sp019407.

Abstract

1. Voltage-clamp Na+ currents (INa) were studied in human intercostal muscle fibres using the loose-patch-clamp technique. 2. The fibres could be divided into two groups based upon the properties of INa. The two groups of fibres were called type 1 and type 2. 3. Both type 1 and type 2 fibres demonstrated fast and slow inactivation of INa. 4. Type 1 fibres had lower INa on the endplate border and extrajunctional membrane than type 2 fibres and required larger membrane depolarizations to inactivate Na+ channels by fast or slow inactivation of INa. 5. Type 2 fibres had a higher ratio of INa at the endplate border compared to extrajunctional membrane than Type 1 fibres. 6. Measurement of membrane capacitance suggested that the increase in INa at the endplate border was due to increased Na+ channel density. 7. Histochemical staining of some fibres suggested that type 1 fibres were slow twitch and type 2 fibres were fast twitch. 8. Differences in the properties of Na+ channels between fast- and slow-twitch fibres may contribute to the ability of fast-twitch fibres to operate at high firing frequencies and slow-twitch fibres to be tonically active.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Electric Stimulation
  • Humans
  • In Vitro Techniques
  • Intercostal Muscles / physiology*
  • Male
  • Membrane Potentials / physiology
  • Middle Aged
  • Sodium Channels / physiology*
  • Time Factors

Substances

  • Sodium Channels