Blockade of excitation reveals inhibition of dentate spiny hilar neurons recorded in rat hippocampal slices

J Neurophysiol. 1992 Sep;68(3):978-84. doi: 10.1152/jn.1992.68.3.978.


1. Extracellular and intracellular recordings in rat hippocampal slices were used to compare the synaptic responses to perforant path stimulation of granule cells of the dentate gyrus, spiny "mossy" cells of the hilus, and area CA3c pyramidal cells of hippocampus. Specifically, we asked whether aspects of the local circuitry could explain the relative vulnerability of spiny hilar neurons to various insults to the hippocampus. 2. Spiny hilar cells demonstrated a surprising lack of inhibition after perforant path activation, despite robust paired-pulse inhibition and inhibitory postsynaptic potentials (IPSPs) in adjacent granule cells and area CA3c pyramidal cells in response to the same stimulus in the same slice. However, when the slice was perfused with excitatory amino acid antagonists [6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), or CNQX with 2-amino-5-phosphonovaleric acid (APV)], IPSPs could be observed in spiny hilar cells in response to perforant path stimulation. 3. The IPSPs evoked in spiny hilar cells in the presence of CNQX were similar in their reversal potentials and bicuculline sensitivity to IPSPs recorded in dentate granule cells or hippocampal pyramidal cells in the absence of CNQX. 4. These results demonstrate that, at least in slices, perforant path stimulation of spiny hilar cells is primarily excitatory and, when excitation is blocked, underlying inhibition can be revealed. This contrasts to the situation for dentate and hippocampal principal cells, which are ordinarily dominated by inhibition, and only when inhibition is compromised can the full extent of excitation be appreciated.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • Animals
  • Bicuculline / pharmacology
  • Electrophysiology
  • Hippocampus / cytology
  • Hippocampus / physiology*
  • In Vitro Techniques
  • Male
  • Neural Inhibition*
  • Neurons / physiology*
  • Quinoxalines / pharmacology
  • Rats
  • Rats, Sprague-Dawley


  • Quinoxalines
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • 2-Amino-5-phosphonovalerate
  • Bicuculline