We have studied the role of Ca2+ entry via voltage-sensitive Ca2+ channels in long-term potentiation (LTP) in the CA1 region of the hippocampus. Repeated depolarizing pulses, in the presence of the NMDA receptor antagonist D-APV and without synaptic stimulation, resulted in a potentiation of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs). This depolarization-induced potentiation was augmented in raised extracellular Ca2+ and was blocked by intracellular BAPTA, a Ca2+ chelator, or by nifedipine, a Ca2+ channel antagonist, indicating that the effect was mediated by Ca2+ entry via voltage-sensitive Ca2+ channels. Although the peak potentiation could be as large as 3-fold, the EPSP(C)s decayed back to baseline values within approximately 30 min. However, synaptic activation paired with depolarizing pulses in the presence of D-APV converted the transient potentiation into a sustained form. These results indicate that a rise in postsynaptic Ca2+ via voltage-sensitive Ca2+ channels can transiently potentiate synaptic transmission, but that another factor associated with synaptic transmission may be required for LTP.