Activated oncogenes and putative tumor suppressor genes involved in human breast cancers

Cancer Treat Res. 1992;63:15-60. doi: 10.1007/978-1-4615-3088-6_2.


Cytogeneticists first proposed that the karyotypic abnormalities identified on chromosomes 1, 3, 6, 11, 13, 16, 17, and 18 supported a genetic basis for breast cancer. Such abnormal banding patterns, however, may represent either loss-of-function or gain-of-function molecular events. RFLP analyses have since confirmed that 20-60% of primary and spontaneous human breast tumors exhibit allelic losses on these same chromosomes, although the exact genes involved at these chromosomal sites remain largely unknown. Knowledge gained about the Rb-1 and p53 tumor suppressor genes at 13q14 and 17p13 in breast and other human tumors supports the paradigm that for any chromosomal locus, allelic loss associated with a mutation in the remaining tumor allele signifies an involved tumor suppressor gene. Given this paradigm, there are nearly a dozen putative breast tumor suppressor genes under active investigation, with most investigators now focusing on various chromosome 17 loci. Among the known proto-oncogenes found activated in breast cancer, amplification of c-erbB-2 at 17q21 is the most widely studied and clinically significant gain-of-function event uncovered to date, occurring in about 20% of all primary breast tumors. The involvement of this overexpressed membrane receptor has engendered interest in related tyrosine kinase receptors, such as EGFR, IR, and IGF-I-R, as well as their respective ligands, which may be overexpressed in a greater fraction of tumors, contributing to the autocrine and paracrine regulation of breast cancer growth and metastasis. New attention is being given to the potentially oncogenic function of structurally altered nuclear transactivating steroid hormone receptors, such as ER, whose overexpression has long been used to determine endocrine therapy and prognosis for individual breast cancer patients. While c-myc was one of the first known proto-oncogenes to be found amplified and overexpressed in human breast cancers, the actual incidence and clinical significance of its activation remain disputed and in need of further study. Lastly, we can expect greater clarification about the importance of various 11q13 genes found coamplified in nearly 20% of primary breast cancers, and pursuit into the intriguing possibility that a cyclin-encoding gene represents the overexpressed locus of real interest in this amplicon. Virtually all of these important genetic abnormalities identified thus far are associated with but not restricted to human breast cancers. The absence of identifiable molecular defects relating to the tissue specificity of this malignancy must be considered a substantial gap in our basic understanding of breast carcinogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Review

MeSH terms

  • Alleles
  • Breast Neoplasms / genetics*
  • Chromosomes, Human, Pair 11
  • Chromosomes, Human, Pair 13
  • Chromosomes, Human, Pair 3
  • Female
  • Gene Amplification
  • Gene Expression Regulation, Neoplastic
  • Gene Rearrangement
  • Genes, Tumor Suppressor*
  • Genes, myc
  • Humans
  • Mutation
  • Oncogenes*
  • Proto-Oncogenes*