Neural, hormonal, and paracrine regulation of gastrin and acid secretion

Yale J Biol Med. Nov-Dec 1992;65(6):553-60; discussion 621-3.


Physiological stimuli from inside and outside the stomach coverage on gastric effector neurons that are the primary regulators of acid secretion. The effector neurons comprise cholinergic neurons and two types of non-cholinergic neurons: bombesin/GRP and VIP neurons. The neurons act directly on target cells or indirectly by regulating release of the hormone, gastrin, the stimulatory paracrine amine, histamine, and the inhibitory paracrine peptide, somatostatin. In the antrum, cholinergic and bombesin/GRP neurons activated by intraluminal proteins stimulate gastrin secretion directly and, in the case of cholinergic neurons, indirectly by eliminating the inhibitory influence of somatostatin (disinhibition). In turn, gastrin acts on adjacent somatostatin cells to restore the secretion of somatostatin. The dual paracrine circuit activated by antral neurons determines the magnitude of gastrin secretion. Low-level distention of the antrum activates, preferentially, VIP neurons that stimulate somatostatin secretion and thus inhibit gastrin secretion. Higher levels of distention activate predominantly cholinergic neurons that suppress antral somatostatin secretion and thus stimulate gastrin secretion. In the fundus, cholinergic neurons activated by distention or proteins stimulate acid secretion directly and indirectly by eliminating the inhibitory influence of somatostatin. The same stimuli activate bombesin/GRP and VIP neurons that stimulate somatostatin secretion and thus attenuate acid secretion. In addition, gastrin and fundic somatostatin influence acid secretion directly and indirectly by regulating histamine release. Acid in the lumen stimulates somatostatin secretion, which attenuates acid secretion in the fundus and gastrin secretion in the antrum.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Gastric Acid / metabolism*
  • Gastric Mucosa / chemistry
  • Gastric Mucosa / metabolism
  • Gastric Mucosa / physiology
  • Gastrins / metabolism*
  • Humans
  • Neurons, Efferent / physiology*
  • Receptors, Somatostatin / analysis
  • Receptors, Somatostatin / physiology*
  • Somatostatin / physiology*


  • Gastrins
  • Receptors, Somatostatin
  • Somatostatin