Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;9(4):597-611.
doi: 10.1089/107632703768247304.

Synergistic Action of Growth Factors and Dynamic Loading for Articular Cartilage Tissue Engineering

Affiliations

Synergistic Action of Growth Factors and Dynamic Loading for Articular Cartilage Tissue Engineering

Robert L Mauck et al. Tissue Eng. .

Abstract

It has previously been demonstrated that dynamic deformational loading of chondrocyte-seeded agarose hydrogels over the course of 1 month can increase construct mechanical and biochemical properties relative to free-swelling controls. The present study examines the manner in which two mediators of matrix biosynthesis, the growth factors TGF-beta1 and IGF-I, interact with applied dynamic deformational loading. Under free-swelling conditions in control medium (C), the [proteoglycan content][collagen content][equilibrium aggregate modulus] of cell-laden (10 x 10(6) cells/mL) 2% agarose constructs reached a peak of [0.54% wet weight (ww)][0.16% ww][13.4 kPa]c, whereas the addition of TGF-beta1 or IGF-I to the control medium led to significantly higher peaks of [1.18% ww][0.97% ww][23.6 kPa](C-TGF) and [1.00% ww][0.63% ww][19.3 kPa](C-IGF), respectively, by day 28 or 35 (p<0.01). Under dynamic loading in control medium (L), the measured parameters were [1.10% ww][0.52% ww][24.5 kPa]L, and with the addition of TGF-beta1 or IGF-I to the control medium these further increased to [1.49% ww][1.07% ww][50.5 kPa](L-TGF) and [1.48% ww][0.81% ww][46.2 kPa](L-IGF), respectively (p<0.05). Immunohistochemical staining revealed that type II collagen accumulated primarily in the pericellular area under free-swelling conditions, but spanned the entire tissue in dynamically loaded constructs. Applied in concert, dynamic deformational loading and TGF-beta1 or IGF-I increased the aggregate modulus of engineered constructs by 277 or 245%, respectively, an increase greater than the sum of either stimulus applied alone. These results support the hypothesis that the combination of chemical and mechanical promoters of matrix biosynthesis can optimize the growth of tissue-engineered cartilage constructs.

Similar articles

See all similar articles

Cited by 98 articles

See all "Cited by" articles

Publication types

LinkOut - more resources

Feedback