Cassava ( Manihot esculenta Crantz) storage roots, organs accumulating large amounts of starch, develop from primary roots via secondary growth. The availability of promoters related to storage-root formation is a prerequisite for engineering root traits in cassava. Two cDNAs, c15 and c54, were identified from a storage-root cDNA library of cassava MCol1505 via differential screening. The transcripts of c15 and c54 were detected in storage roots but not in leaves by Northern analysis. Homology analysis of the deduced amino acid sequences showed that C15 is likely to be related to cytochrome P450 proteins, which are involved in the oxidative degradation of various compounds, while C54 may be related to Pt2L4, a cassava glutamic acid-rich protein. The promoter regions of c15 and c54 were isolated from the corresponding clones in a cassava genomic library. A 1,465-bp promoter fragment ( p15/1.5) of c15 and a 1,081-bp promoter region ( p54/1.0) of c54 were translationally fused to the uidA reporter gene, and introduced into cassava and Arabidopsis thaliana (L.) Heynh. The expression patterns of p15/1.5::uidA and p54/1.0::uidA in transgenic plants showed that both promoters are predominantly active in phloem, cambium and xylem vessels of vascular tissues from leaves, stems, and root systems. More importantly, strong beta-glucuronidase activity was also detected in the starch-rich parenchyma cells of transgenic storage roots. Our results demonstrate that the two promoters are related to vascular expression and secondary growth of storage roots in cassava.