A DNA transformation-competent Arabidopsis genomic library in Agrobacterium

Biotechnology (N Y). 1991 Oct;9(10):963-7. doi: 10.1038/nbt1091-963.

Abstract

We have constructed a nuclear genomic library from the cruciferous plant Arabidopsis thaliana ecotype Columbia in a cosmid vector, pLZO3, and a host organism, Agrobacterium tumefaciens AGL1, which can directly DNA-transform the parent organism, Arabidopsis. The broad host range cosmid pLZO3 carries a gentamicin acetyltransferase gene as bacterial selective marker and tandem, chimeric neomycin and streptomycin phosphotransferase genes as plant selective markers. Agrobacterium AGL1 carries the hypervirulent, attenuated tumor-inducing plasmid pTiBo542 from which T-region DNA sequences have been precisely deleted, allowing optimal DNA transformation of many dicotyledonous plants. Agrobacterium AGL1 also carries an insertion mutation in its recA general recombination gene, which stabilizes the recombinant plasmids. The Arabidopsis genomic library consists of some 21,600 clones gridded onto 96-well microtiter dishes and, if random, carries at least three genomic equivalents. When probed for the presence of several Arabidopsis low copy-number genes, the genomic library seems representative. As with the unicellular organisms Escherichia coli and Saccharomyces cerevisiae, this DNA transformation competent genomic library should expedite gene isolation, by gene rescue, in multicellular organisms like Arabidopsis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Agrobacterium tumefaciens / genetics*
  • Bacteriophage lambda / genetics
  • Cloning, Molecular
  • Cosmids
  • DNA, Bacterial / genetics*
  • Escherichia coli / genetics
  • Genetic Vectors
  • Genomic Library
  • Plants / genetics*
  • Polymerase Chain Reaction / methods
  • Restriction Mapping

Substances

  • DNA, Bacterial
  • T-DNA