Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation

Arch Biochem Biophys. 1992 Oct;298(1):211-25. doi: 10.1016/0003-9861(92)90115-d.

Abstract

Antibody against purified CYP2A1 recognizes two rat liver microsomal P450 enzymes, CYP2A1 and CYP2A2, that catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone, respectively. In human liver microsomes, this antibody recognizes a single protein, namely CYP2A6, which catalyzes the 7-hydroxylation of coumarin. To examine species differences in CYP2A function, liver microsomes from nine mammalian species (rat, mouse, hamster, rabbit, guinea pig, cat, dog, cynomolgus monkey, and human) were tested for their ability to catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone and the 7-hydroxylation of coumarin. Antibody against rat CYP2A1 recognized one or more proteins in liver microsomes from all mammalian species examined. However, liver microsomes from cat, dog, cynomolgus monkey, and human catalyzed negligible rates of testosterone 7 alpha- and/or 15 alpha-hydroxylation, whereas rat and cat liver microsomes catalyzed negligible rates of coumarin 7-hydroxylation. Formation of 7-hydroxycoumarin accounted for a different proportion of the coumarin metabolites formed by liver microsomes from each of the various species examined. 7-Hydroxycoumarin was the major metabolite (greater than 70%) in human and monkey, but only a minor metabolite (less than 1%) in rat. The 7-hydroxylation of coumarin by human liver microsomes was catalyzed by a single, high-affinity enzyme (Km 0.2-0.6 microM), which was markedly inhibited (greater than 95%) by antibody against rat CYP2A1. The rate of coumarin 7-hydroxylation varied approximately 17-fold among liver microsomes from 22 human subjects. This variation was highly correlated (r2 = 0.956) with interindividual differences in the levels of CYP2A6, as determined by immunoblotting. These results indicate that CYP2A6 is largely or entirely responsible for catalyzing the 7-hydroxylation of coumarin in human liver microsomes. Treatment of monkeys with phenobarbital or dexamethasone increased coumarin 7-hydroxylase activity, whereas treatment with beta-naphthoflavone caused a slight decrease. These results suggest that environmental factors can increase or decrease CYP2A expression in cynomolgus monkeys, which implies that environmental factors may be responsible for the large variation in CYP2A6 levels in humans, although genetic factors may also be important. In contrast to rats and mice, the expression of CYP2A enzymes in cynomolgus monkeys and humans was not sexually differentiated. Despite their structural similarity to coumarin, the anticoagulants dicumarol and warfarin do not appear to be substrates for CYP2A6. The overall rate of dicumarol metabolism varied approximately 5-fold among the human liver microsomal samples, but this variation correlated poorly (r2 = 0.126) with the variation observed in CYP2A6 levels and coumarin 7-hydroxylase activity.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Cytochrome P-450 CYP2A6
  • Cytochrome P-450 Enzyme System / immunology
  • Cytochrome P-450 Enzyme System / metabolism*
  • Dicumarol / metabolism
  • Female
  • Humans
  • Male
  • Microsomes, Liver / enzymology*
  • Mixed Function Oxygenases / immunology
  • Mixed Function Oxygenases / metabolism
  • Rats
  • Species Specificity
  • Terminology as Topic
  • Testosterone / metabolism
  • Warfarin / metabolism
  • Xenobiotics / pharmacology

Substances

  • Xenobiotics
  • Testosterone
  • Warfarin
  • Dicumarol
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Aryl Hydrocarbon Hydroxylases
  • CYP2A6 protein, human
  • Cytochrome P-450 CYP2A6