Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis

J Biol Chem. 1992 Nov 5;267(31):22298-304.

Abstract

Site-directed mutagenesis was utilized to identify binding sites for NAD(P)H and dicumarol in rat liver NAD(P)H:quinone oxidoreductase (NQOR, EC 1.6.99.2). The mutant cDNA clones were generated by a procedure based on the polymerase chain reaction and were expressed in Escherichia coli. The mutant enzymes were purified to apparent homogeneity as judged by SDS-polyacrylamide gel electrophoresis and were found to contain 2 FADs/enzyme molecule identical with that of the wild-type NQOR. Purified mutant enzymes Y128D, G150F, G150V, S151F, and Y155D showed dramatic decreases in activities in the reduction of dichlorophenolindophenol in comparison with the activities of the wild-type enzyme, whereas the activities of F124L, T127V, T127E, Y128V, Y128F, S151A, and Y155V were similar to those of NQOR. Enzyme kinetic analysis revealed that the Km values of T127E, Y128D, G150F, G150V, S151F, and Y155D were, respectively, 4-, 2-, 13-, 5-, 26-, and 19-fold higher than the Km of NQOR for NADPH, and were, respectively, 2-, 3-, 7-, 3-, 20-, and 11-fold higher than that of NQOR for NADH. The kcat values of Y128D, G150F, and G150V were also much lower than those of NQOR, but the kcat values of other mutants were similar to those of the wild-type enzyme. The Km values of the mutants for dichlorophenolindophenol were the same or slightly higher than that of NQOR. The apparent inhibition constants (Ki) for dicumarol on Y128V and F124L were elevated 12 and 8 times, respectively. Similar, but smaller, changes on Ki for 4-hydroxycoumarin were also observed. This study demonstrated that residues Gly150, Ser151, and Tyr155 in the glycine-rich region of NQOR are essential for NADPH and NADH binding and Tyr128 is important for dicumarol binding. Based on the results of the study, it is proposed that the glycine-rich region of the enzyme, along with other residues around the region, forms a beta sheet-turn-alpha helix structure important for the binding of the pyrophosphate group of NADPH and NADH.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Binding Sites
  • Coenzymes / metabolism
  • Consensus Sequence
  • Cytosol / enzymology
  • Dicumarol / metabolism
  • Glycine / chemistry
  • Kinetics
  • Liver / enzymology*
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • NAD(P)H Dehydrogenase (Quinone) / chemistry*
  • NADP / metabolism
  • Oligodeoxyribonucleotides / chemistry
  • Protein Binding
  • Rats
  • Sequence Alignment
  • Structure-Activity Relationship
  • Triazines / metabolism
  • Tyrosine / chemistry

Substances

  • Coenzymes
  • Oligodeoxyribonucleotides
  • Triazines
  • Tyrosine
  • NADP
  • Cibacron Blue F 3GA
  • Dicumarol
  • NAD(P)H Dehydrogenase (Quinone)
  • Glycine

Associated data

  • GENBANK/J02640