Factors that influence the therapeutic activity of 5-fluorouracil [6RS]leucovorin combinations in colon adenocarcinoma xenografts

Cancer Chemother Pharmacol. 1992;30(6):423-32. doi: 10.1007/BF00685592.


The therapeutic activity of FUra alone or combined with [6RS]LV doses ranging from 50 to 1,000 mg/m2 was examined in eight colon adenocarcinoma xenografts, of which five were established from adult neoplasms (HxELC2, HxGC3, HxVRC5, HxHC1, and HxGC3/c1TK-c3 selected for TK deficiency) and three were derived from adolescent tumors (HxSJC3A, HxSJC3B, and HxSJC2). The growth-inhibitory effects of FUra were potentiated by higher doses of [6RS]LV (500-1,000 mg/m2) in three lines (HxGC3/c1TK-c3, HxSJC3A, and HxSJC3B) and by a low dose of [6RS]LV in only one tumor (HxVRC5). Expansion of pools of CH2-H4PteGlun+H4PteGlun (greater than or equal to 2.4-fold) in response to higher doses of [6RS]LV was obtained in all lines except HxHC1. Metabolism of [6RS]LV was high in HxVRC5, with high levels of 5-CH3-H4PteGlu being detected, but not in HxHC1, in which levels of 5-CH3-H4PteGlu and CH = H4PteGlu+10-CHO-H4PteGlu remained relatively low. In the adolescent tumors, levels of CH = H4PteGlu+10-CHO-H4PteGlu were consistently higher than those of 5-CH3-H4PteGlu following [6RS]LV administration, and in HxSJC3A, in which pools of CH2-H4PteGlun+H4PteGlun were significantly expanded, 5-CH3-H4PteGlu concentrations were lower than those observed in the other two lines. The sensitivity of tumors to FUra +/- [6RS]LV and the characteristics of [6S]LV metabolism did not correlate with the activity of CH = H4PteGlu synthetase, the enzyme responsible for the initial cellular metabolism of [6S]LV to CH = H4PteGlu. Thus, no single metabolic phenotype correlated with the [6RS]LV-induced expansion of CH2-H4PteGlun+H4PteGlun pools. Potentiation of the therapeutic efficacy of FUra by [6RS]LV was observed in HxGC3/c1TK-c3 xenografts but not in parent HxGC3 tumors, demonstrating the influence of dThd salvage capability in the response to FUra-[6RS]LV combinations. Plasma dThd concentrations in CBA/CaJ mice were high (1.1 microM). The present data therefore demonstrate the importance of (1) higher doses of [6RS]LV, (2) expansion of pools of CH2-H4PteGlun+H4PteGlun, and (3) dThd salvage capability in potentiation of the therapeutic efficacy of FUra in colon adenocarcinoma xenografts. The plasma levels of FUra achieved in mice are presented.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Animals
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use*
  • Colonic Neoplasms / drug therapy*
  • Fluorouracil / administration & dosage
  • Fluorouracil / blood
  • Fluorouracil / therapeutic use*
  • Humans
  • Leucovorin / administration & dosage
  • Leucovorin / analogs & derivatives
  • Leucovorin / analysis
  • Mice
  • Mice, Inbred CBA
  • Neoplasm Transplantation
  • Tetrahydrofolates / analysis


  • Tetrahydrofolates
  • 10-formyltetrahydropteroylglutamic acid
  • 5,10-methenyltetrahydrofolate
  • Leucovorin
  • 5-methyltetrahydrofolate
  • Fluorouracil