By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro

J Mol Biol. 1992 Sep 20;227(2):381-8. doi: 10.1016/0022-2836(92)90894-p.


By display of antibody repertoires on the surface of a filamentous bacteriophage and selection of the phage by binding to antigen, we can mimic immune selection. Recently, by tapping the repertoire of rearranged V-genes from the peripheral blood lymphocytes of unimmunised donors, we succeeded in making human antibody fragments with different specificities, including both haptens and proteins, from the same library of phage. Now we have built a repertoire of human VH genes from 49 human germline VH gene segments rearranged in vitro to create a synthetic third complementarity determining region (CDR) of five or eight residues. The rearranged VH genes were cloned with a human V lambda 3 light chain as single chain Fv fragments for phage display, and the library of phage panned by binding to each of two haptens, 2-phenyl-5-oxazolone (phOx) or 3-iodo-4-hydroxy-5-nitrophenyl-acetate (NIP) coupled to bovine serum albumin (BSA). Many different antibody fragments were isolated which bound specifically to hapten, some with affinities in the micromolar range. The in vitro "immune response" to the hapten NIP was dominated by the 9-1 segment (VH3 family), and that to phOx by the VH26 segment (VH3 family) with an invariant aromatic residue (Tyr, Phe, Trp) at residue 97 of CDR3. However, the isolation of phage against protein antigens proved more elusive, with a single phage binding to human tumour necrosis factor, and none to bovine serum albumin, turkey egg-white lysozyme or human thyroglobulin. Nevertheless, the work shows that human antibody fragments with specific binding activities can be made entirely in vitro.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Cloning, Molecular
  • DNA
  • Gene Rearrangement*
  • Genes, Immunoglobulin*
  • Genomic Library
  • Humans
  • Immunization
  • Immunoglobulin Heavy Chains / genetics*
  • Immunoglobulin Variable Region / genetics*
  • Molecular Sequence Data
  • Polymerase Chain Reaction


  • Immunoglobulin Heavy Chains
  • Immunoglobulin Variable Region
  • DNA