Quantum yields and kinetics of the photobleaching of hematoporphyrin, Photofrin II, tetra(4-sulfonatophenyl)-porphine and uroporphyrin

Photochem Photobiol. 1992 Jun;55(6):797-808. doi: 10.1111/j.1751-1097.1992.tb08527.x.


Porphyrins used as sensitizers for the photodynamic therapy (PDT) of tumors are progressively destroyed (photobleached) during illumination. If the porphyrin bleaches too rapidly, tumor destruction will not be complete. However, with appropriate sensitizer dosages and bleaching rates, irreversible photodynamic injury to the normal tissues surrounding the tumor, which retain less sensitizer, may be significantly decreased. This paper surveys the quantum yields and kinetics of the photobleaching of four porphyrins: hematoporphyrin (HP), Photofrin II (PF II), tetra(4-sulfonatophenyl)porphine (TSPP) and uroporphyrin I (URO). The initial quantum yields of photobleaching, as measured in pH 7.4 phosphate buffer in air, were: 4.7 x 10(-5), 5.4 x 10(-5), 9.8 x 10(-6), and 2.8 x 10(-5) for HP, PF II, TSPP and URO respectively; thus, the rates of photobleaching are rather slow. Low oxygen concentration (2 microM) significantly reduced the photobleaching yields. However, D2O increased the yields only slightly, and the singlet oxygen quencher, azide, had no effect, even at 0.1 M. Photosensitizing porphyrins in body fluids, cells and tissues may be closely associated with various photooxidizable molecules and electron acceptors and donors. Therefore, selected model compounds in these categories were examined for their effects on porphyrin photobleaching. A number inhibited and/or accelerated photobleaching, depending on the compound, the porphyrin and the reaction conditions. For example, 1.0 mM furfuryl alcohol increased the photobleaching yields of HP and URO more than 5-fold, with little effect on PF II or TSPP. In contrast, the electron acceptor, methyl viologen, increased the photobleaching yield of TSPP more than 10-fold, with little accelerating effect on the other porphyrins. These results suggest that the mechanism(s) of the photobleaching of porphyrin photosensitizers in cells and tissues during PDT may be complex.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Dihematoporphyrin Ether / chemistry*
  • Hematoporphyrins / chemistry*
  • Kinetics
  • Photochemistry
  • Porphyrins / chemistry*
  • Quantum Theory
  • Radiation-Sensitizing Agents / chemistry*
  • Uroporphyrins / chemistry*


  • Hematoporphyrins
  • Porphyrins
  • Radiation-Sensitizing Agents
  • Uroporphyrins
  • tetraphenylporphine sulfonate
  • Dihematoporphyrin Ether