Adaptation of rabbit cortical collecting duct to in vitro acid incubation

Am J Physiol. 1992 Oct;263(4 Pt 2):F749-56. doi: 10.1152/ajprenal.1992.263.4.F749.

Abstract

Cortical collecting ducts (CCDs) isolated from acid-loaded rabbits and perfused in vitro absorb HCO3-, whereas CCDs from normal animals secrete HCO3-. We have previously shown that CCDs incubated in vitro for 3 h at pH 6.9 show a reduction in net (baseline and stimulated) HCO3- secretion. In this study we ascertained the minimum duration of an acidic stimulus necessary to induce adaptive changes in stimulated HCO3- secretion (determined in the absence of basolateral Cl-) and the roles of protein synthesis and cytoskeletal function in this process. CCDs incubated in acid (pH 6.8, HCO3- 6 mM) for 1 h followed by incubation at pH 7.4 (HCO3- 25 mM) for 2 h showed a 41% reduction in stimulated HCO3- secretion (P < 0.001), similar to that observed after 3 h of incubation at pH 6.8. However, this incubation protocol failed to enhance stimulated HCO3- absorption (determined in the absence of luminal Cl-). Addition of 10 microM anisomycin, a reversible inhibitor of protein synthesis, throughout the entire period of incubation (1 h at pH 6.8 plus 2 h at pH 7.4) blocked adaptive reduction in HCO3- secretion, as did exposure to anisomycin only during the initial 1 h of acid incubation. In contrast, anisomycin application during the 2-h incubation at pH 7.4 failed to block this adaptation of HCO3- secretion. Application of 4 microM actinomycin D, an inhibitor of DNA transcription, during the acid incubation also prevented the adaptive response, as did application during the total or during the 2-h pH 7.4 incubation period of 0.2 microM cytochalasin D, an inhibitor of actin filament function.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Absorption / drug effects
  • Acids / pharmacology*
  • Adaptation, Physiological* / drug effects
  • Animals
  • Anisomycin / pharmacology
  • Bicarbonates / metabolism
  • Culture Media
  • Cytochalasin D / pharmacology
  • Dactinomycin / pharmacology
  • Female
  • In Vitro Techniques
  • Kidney Cortex
  • Kidney Tubules, Collecting / drug effects*
  • Rabbits

Substances

  • Acids
  • Bicarbonates
  • Culture Media
  • Dactinomycin
  • Cytochalasin D
  • Anisomycin