The spinal motor system in early vertebrates and some of its evolutionary changes

Brain Behav Evol. 1992;40(2-3):82-97. doi: 10.1159/000113905.

Abstract

Recent studies of the spinal motor systems of vertebrates allow us to begin to infer the organization of the motor apparatus of primitive vertebrates. This paper attempts to define some of the features of the motor system of early vertebrates based on studies of the motor systems in anamniotes and in Branchiostoma. It also deals with some changes in the primitive motor system during evolution. The primitive motor system consisted of myomeric axial muscles, with a functional subdivision of the musculature into non-spiking slow muscle fibers segregated in the myomeres from spiking fast ones. These fibers were innervated by two major classes of motoneurons in the cord-large motoneurons innervating faster fibers and small motoneurons innervating slow fibers. There was not a simple isomorphic mapping of the position of motoneurons in the motor column onto the location of the muscle fibers they innervated in the myomeres. Early vertebrates used these axial muscles to bend the body, and the different types of muscle fibers and motoneurons reflect the ability to produce slow swimming movements as well as very rapid bending associated with fast swimming or escapes. The premotor network producing bending was most likely a circuit composed of a class of descending interneurons (DIs) that provided excitation of ipsilateral motoneurons and other interneurons, and inhibitory commissural interneurons (CIs) that blocked contralateral activity and played an important role in generating the rhythmic alternating bending during swimming. This DI/CI network was retained in living anamniotes. At least two major descending systems linked the sensory systems in the head to these premotor networks in the spinal cord. The ability to turn on swimming by activation of DI/CI premotor networks in the cord resided at least in part in a midbrain locomotor region (MLR) that influenced spinal networks via projections to the reticular formation. Reticulospinal neurons were important not only for initiation of rhythmic swimming but also in the production of turning movements. The reticulospinal cells involved in turns produced their effects in part via monosynaptic connections with motor neurons and premotor interneurons, including some involved in rhythmic swimming. A prominent and powerful Mauthner cell was most likely present and important for rapid escape or startle movements. Some features of this primitive motor apparatus were conserved during the evolution of vertebrate motor systems, and others changed substantially. Many features of the early motor system were retained in living anamniotes; major changes occur among amniotes.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Biological Evolution*
  • Locomotion / physiology*
  • Motor Neurons / ultrastructure*
  • Muscle Contraction / physiology
  • Muscles / innervation*
  • Phylogeny*
  • Species Specificity
  • Spinal Cord / anatomy & histology*
  • Vertebrates / anatomy & histology*