Golgi proteins persist in the tubulovesicular remnants found in brefeldin A-treated pancreatic acinar cells

Eur J Cell Biol. 1992 Aug;58(2):202-13.


Brefeldin A (BFA) blocks protein export from the endoplasmic reticulum (ER) and causes dismantling of the Golgi cisternae with relocation of resident Golgi proteins to the ER in many cultured cell lines. We examined the effects of BFA on Golgi organization and the distribution of Golgi markers in the rat exocrine pancreas. Immediately after BFA addition, Golgi stacks began to disorganize and Golgi cisternae to vesiculate, and by 15 min no intact Golgi cisternae remained. However, even after prolonged BFA incubation, clusters of small vesicles surrounded by transitional elements of the ER persisted both in the Golgi region and dispersed throughout the apical cytoplasm. These vesicles were morphologically heterogeneous in the density of their content and in the presence of cytoplasmic coats. Immunogold labeling demonstrated that some vesicles within the clusters contained gp58, a cis Golgi marker, and some contained alpha-mannosidase II, a middle/trans Golgi marker in this cell type. Neither marker was detected in the rough ER by immunogold or immunofluorescence labeling. When AlF4- was added during BFA treatment some of the vesicles in the clusters appeared coated. When microsomes were subfractionated into Golgi (light) and rough ER (heavy) fractions on sucrose density gradients, greater than 65% of alpha-mannosidase II and galactosyltransferase activities were found in light fractions (1.14-1.16 g/ml) in both control and BFA-treated lobules. In both cases equally low enzyme activity was recovered in heavier fractions (1.2-1.23 g/ml) containing RNA and alpha-glucosidase activity. However, 5 to 8% of the total recovered RNA consistently codistributed with the Golgi enzyme peak. These results indicate that BFA rapidly inhibits secretion and causes dismantling of the Golgi stacks in pancreatic acinar cells, but clusters of vesicles consisting of bona fide Golgi remnants persist even with prolonged exposure to BFA. Many of the vesicles contain Golgi markers by immunolabeling. By cell fractionation Golgi membrane enzyme activities are recovered in equal amounts in light (Golgi) fractions in both controls and BFA-treated specimens. These findings indicate that in the exocrine pancreas there is a dissociation of BFA's effects on the exocytic pathway: there is a block in transport and Golgi organization is disrupted, but remnant Golgi vesicles and tubules persist and retain Golgi membrane antigens and enzyme activities.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brefeldin A
  • Cells, Cultured
  • Cyclopentanes / pharmacology*
  • Galactosyltransferases / analysis
  • Golgi Apparatus / chemistry
  • Golgi Apparatus / drug effects*
  • Mannosidases / analysis
  • Microsomes / chemistry
  • Pancreas / chemistry
  • Pancreas / drug effects*
  • Pancreas / ultrastructure
  • Rats


  • Cyclopentanes
  • Brefeldin A
  • Galactosyltransferases
  • Mannosidases
  • mannosyl-oligosaccharide 1,3 - 1,6-alpha-mannosidase