The mapping by high-pH anion-exchange chromatography with pulsed amperometric detection and capillary electrophoresis of the carbohydrate moieties of human plasma alpha 1-acid glycoprotein

Anal Biochem. 1992 Nov 1;206(2):419-29. doi: 10.1016/0003-2697(92)90388-n.

Abstract

The reducing oligosaccharides released from alpha 1-acid glycoprotein (AGP) by conventional hydrazinolysis have been analyzed by two different mapping techniques, using high-pH anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) and capillary electrophoresis (CE) with uv detection at 190 nm. The CE measurements proved about 4000 times more sensitive than the measurements by HPAE-PAD. The N-glycan pool was fractionated by Mono Q anion-exchange chromatography, and individual fractions so obtained were desialylated using Vibrio cholerae neuraminidase. The resulting asialo-N-glycans were further analyzed by HPAE-PAD, revealing 2 major, 4 intermediate, and 4 small peaks and at least 3 spikes, which counted for at least 13 different asialo-N-glycans. The carbohydrate structures were tentatively assigned by comparison of the Mono Q-separated N-glycans with the known AGP carbohydrate structures and known structures contained in a mapping database that allows structural assignment of N-glycans by mere comparison of retention times. In addition to the hitherto known AGP carbohydrate structures, we have tentatively identified a number of sulfated N-glycans that are currently being analyzed in more detail. We have also compared the glycan pools recovered from AGP using hydrazinolysis and glycopeptidase F (PNGase F). Approximately 40 distinct peaks could be detected in the hydrazinolysis-derived N-glycan pool by either technique (HPAE-PAD and CE), while about 30 distinct peaks were detected in the N-glycan pool derived by PNGase F digestion of the tryptic AGP digest of the same batch of AGP. These differences were attributed to an increased desialylation (approximately 3 mol%) during hydrazinolysis, based on the detection by HPAE-PAD and CE of free sialic acid and monosialylated oligosaccharides in the glycan pool derived by conventional hydrazinolysis. The integrity of the N-glycans' chitobiose core was examined by 500-MHz 1H NMR spectoscopy. The hydrazinolysis procedure could be optimized such that the hydrazinolysis-derived N-glycan pool was chromatographically essentially identical to the PNGase F-derived N-glycan pool. Hydrazinolysis proved best, with practically no loss of N-acetlylneuraminic acid and the closest resemblance to the PNGase F-derived N-glycan pool, using an automated apparatus. Notably, it was recognized that, in our hands, PNGase F digestion in the presence of sodium dodecyl sulfate resulted in partial desialylation of the liberated N-glycans.

MeSH terms

  • Capillary Action
  • Carbohydrate Sequence
  • Carbohydrates / analysis
  • Chromatography, Ion Exchange / methods
  • Electrophoresis / methods
  • Humans
  • Hydrogen-Ion Concentration
  • Magnetic Resonance Spectroscopy / methods
  • Molecular Sequence Data
  • Oligosaccharides / chemistry*
  • Oligosaccharides / isolation & purification
  • Orosomucoid / chemistry*
  • Potentiometry / methods

Substances

  • Carbohydrates
  • Oligosaccharides
  • Orosomucoid