Comparative lectin histochemistry on taste buds in foliate, circumvallate and fungiform papillae of the rabbit tongue

Histochemistry. 1992 Oct;98(3):173-82. doi: 10.1007/BF00315876.


Taste buds (TB) in the foliate, circumvallate and fungiform papillae of the rabbit tongue were examined with lectin histochemistry by means of light (LM) and electron (EM) microscopy. Biotin- and gold-labeled lectins were used for the detection of carbohydrate residues in TB cells and subcutaneous salivary glands. At the LM level, the lectins of soybean (SBA) and peanut (PNA) react with material of the foliate and circumvallate taste pores only after pretreatment of the section with neuraminidase. This indicates that the terminal trisaccharide sequences are as follows: Sialic acid-Gal-GalNAc in O-glycosylated glycoproteins or Sialic acid-Gal-GlcNAc in N-glycosylated glycoproteins. In fungi-form taste buds the lectins of Dolichos biflorus (DBA) and Helix pomatia (HPA), also specific to GalNAc residues, are reactive without preincubation with neuraminidase. Wheat germ agglutinin (WGA), specific to GlcNAc, reacts with TBs of all papillae; and the lectin from Ulex europaeus (UEA I), specific to fucose, binds to individual TB cells. The presence of sialic acid may protect mucus or other glycoproteins in TB cells and inside the taste pore from premature enzymatic degradation. In a post-embedding EM procedure on LR-White-embedded tissue sections, only gold-labeled HPA was found to bind especially on membrane surfaces of the microvilli which protrude into the taste pore; however HPA did not bind to the electron-dense mucus inside the taste pore. The mucus situated in the trough and at the top of the adjacent epithelial cells also is strongly HPA-positive, but is of different origin and composition than that found in the taste pore. These results demonstrate distinct carbohydrate histochemical differences between fungiform and circumvallate/foliate taste buds. The different configuration of galactosyl residues and the occurrence of mannose in circumvallate and foliate TBs leads to the suggestion that the lectin reactivities of TBs are not only due to the presence of mucins, but also to N-linked glycoproteins, possibly with a hormone-like paraneuronal function. A possible relationship to v. Ebner glands in these papillae is discussed.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Carbohydrate Sequence
  • Carbohydrates / analysis*
  • Fixatives
  • Histocytochemistry
  • Lectins
  • Microscopy, Electron
  • Molecular Sequence Data
  • Muscles / chemistry
  • Rabbits
  • Taste Buds / chemistry*
  • Taste Buds / ultrastructure
  • Tongue / anatomy & histology*
  • Tongue / chemistry
  • Tongue / innervation


  • Carbohydrates
  • Fixatives
  • Lectins