A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses

J Biol Chem. 2003 Dec 19;278(51):51613-21. doi: 10.1074/jbc.M305633200. Epub 2003 Oct 7.

Abstract

Members of the tumor necrosis factor (TNF) receptor (TNFR) superfamily are potent regulators of apoptosis, a process that is important for the maintenance of immune homeostasis. Recent evidence suggests that TNFR-1 and Fas and TRAIL receptors can also trigger an alternative form of cell death that is morphologically distinct from apoptosis. Because distinct molecular components including the serine/threonine protein kinase receptor-interacting protein (RIP) are required, we have referred to this alternative form of cell death as "programmed necrosis." We show that TNFR-2 signaling can potentiate programmed necrosis via TNFR-1. When cells were pre-stimulated through TNFR-2 prior to subsequent activation of TNFR-1, enhanced cell death and recruitment of RIP to the TNFR-1 complex were observed. However, TNF-induced programmed necrosis was normally inhibited by caspase-8 cleavage of RIP. To ascertain the physiological significance of RIP and programmed necrosis, we infected Jurkat cells with vaccinia virus (VV) and found that VV-infected cells underwent programmed necrosis in response to TNF, but deficiency of RIP rescued the infected cells from TNF-induced cytotoxicity. Moreover, TNFR-2-/- mice exhibited reduced inflammation in the liver and defective viral clearance during VV infection. Interestingly, death effector domain-containing proteins such as MC159, E8, K13, and cellular FLIP, but not the apoptosis inhibitors Bcl-xL, p35, and XIAP, potently suppressed programmed necrosis. Thus, TNF-induced programmed necrosis is facilitated by TNFR-2 signaling and caspase inhibition and may play a role in controlling viral infection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigens, CD / genetics
  • Antigens, CD / immunology
  • Antigens, CD / metabolism
  • Antigens, CD / physiology*
  • Caspase 8
  • Caspase 9
  • Caspases / pharmacology
  • Humans
  • Jurkat Cells
  • Mice
  • Mice, Knockout
  • Necrosis
  • Proteins / immunology
  • Proteins / metabolism
  • Proteins / physiology*
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Receptors, Tumor Necrosis Factor / genetics
  • Receptors, Tumor Necrosis Factor / immunology
  • Receptors, Tumor Necrosis Factor / metabolism
  • Receptors, Tumor Necrosis Factor / physiology*
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Signal Transduction
  • Tumor Necrosis Factor-alpha / pharmacology
  • Vaccinia / immunology
  • Vaccinia / pathology
  • Virus Diseases / immunology
  • Virus Diseases / pathology*

Substances

  • Antigens, CD
  • Proteins
  • Receptors, Tumor Necrosis Factor
  • Receptors, Tumor Necrosis Factor, Type I
  • Receptors, Tumor Necrosis Factor, Type II
  • Tumor Necrosis Factor-alpha
  • RIPK1 protein, human
  • Receptor-Interacting Protein Serine-Threonine Kinases
  • Ripk1 protein, mouse
  • CASP8 protein, human
  • CASP9 protein, human
  • Casp8 protein, mouse
  • Casp9 protein, mouse
  • Caspase 8
  • Caspase 9
  • Caspases