Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 9;425(6958):624-8.
doi: 10.1038/nature01910.

Regulation of neuroblast competence in Drosophila

Affiliations

Regulation of neuroblast competence in Drosophila

Bret J Pearson et al. Nature. .

Abstract

Individual neural progenitors generate different cell types in a reproducible order in the retina, cerebral cortex and probably in the spinal cord. It is unknown how neural progenitors change over time to generate different cell types. It has been proposed that progenitors undergo progressive restriction or transit through distinct competence states; however, the underlying molecular mechanisms remain unclear. Here we investigate neural progenitor competence and temporal identity using an in vivo genetic system--Drosophila neuroblasts--where the Hunchback transcription factor is necessary and sufficient to specify early-born cell types. We show that neuroblasts gradually lose competence to generate early-born fates in response to Hunchback, similar to progressive restriction models, and that competence to acquire early-born fates is present in mitotic precursors but is lost in post-mitotic neurons. These results match those observed in vertebrate systems, and establish Drosophila neuroblasts as a model system for the molecular genetic analysis of neural progenitor competence and plasticity.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources