Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 20;228(2):662-71.
doi: 10.1016/0022-2836(92)90848-e.

Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity

Affiliations

Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity

P J Baker et al. J Mol Biol. .

Erratum in

  • J Mol Biol 1993 Aug 5;232(3):1012

Abstract

The dinucleotide binding beta alpha beta motif in the crystal structures of seven different enzymes has been analysed in terms of their three-dimensional structures and primary sequences. We have identified that the hydrogen bonding of the adenine ribose to the glycine-rich turn containing the fingerprint sequence GXGXXG/A occurs via a direct or indirect mechanism, depending on the nature of the fingerprint sequence but independent of coenzyme specificity. The major determinant of the type of interaction is the nature of the residue occupying the last position of the above fingerprint. In the NAD(+)-linked dehydrogenases, an acidic residue is commonly used to form important hydrogen bonds to the adenine ribose hydroxyls and, hitherto, this residue has been thought to be an indicator of NAD+ specificity. However, on the basis of the three-dimensional structure of the NAD(+)-linked glutamate dehydrogenase (GDH) from Clostridium symbiosum we have demonstrated that this residue is not a universal requirement for the construction of an NAD+ binding site. Furthermore, considerations of sequence homology unambiguously identify an equivalent acidic residue in both NADP+ and dual specificity glutamate dehydrogenases. The conservation of this residue in these enzymes, coupled to its close proximity to the 2' phosphate implied by the necessary similarity in three-dimensional structure to C. symbiosum GDH, implicates this residue in the recognition of the 2' phosphate either via water-mediated or direct hydrogen-bonding schemes. Analysis of the latter has led us to suggest that two patterns of recognition for the 2' phosphate group of NADP(+)-binding enzymes may exist, which are distinguished by the ionization state of the 2' phosphate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources