The molecular genetics of virulence of Xanthomonas campestris

Biotechnol Adv. 1999 Nov;17(6):489-508. doi: 10.1016/s0734-9750(99)00025-7.


Bacteria belonging to the genus Xanthomonas are important pathogens of many plants, and their virulence appears to be due primarily to secreted and surface compounds that could increase host nutrient loss, or avoid or suppress unfavorable conditions in the host. Type II and III secretory pathways are essential for virulence. Some individual extracellular enzymes (type II-secretion dependent) affect final bacterial population levels, whereas some avirulence gene products (type III-secretion dependent) affect virulence by altering host metabolism. Avr proteins, probably secreted via a pilus, can also be recognized by host resistance gene products. Virulence is also associated with bacterial surface polysaccharides, which may help to avoid host defense responses, and regulatory gene systems, which can control virulence gene expression.