Tissue microarray study for classification of breast tumors

Life Sci. 2003 Nov 7;73(25):3189-99. doi: 10.1016/j.lfs.2003.05.006.


Clinical and pathological heterogeneity of breast cancer hinders selection of appropriate treatment for individual cases. Molecular profiling at gene or protein levels may elucidate the biological variance of tumors and provide a new classification system that correlates better with biological, clinical and prognostic parameters. We studied the immunohistochemical profile of a panel of seven important biomarkers using tumor tissue arrays. The tumor samples were then classified with a monothetic (binary variables) clustering algorithm. Two distinct groups of tumors are characterized by the estrogen receptor (ER) status and tumor grade (p = 0.0026). Four biomarkers, c-erbB2, Cox-2, p53 and VEGF, were significantly overexpressed in tumors with the ER-negative (ER-) phenotype. Eight subsets of tumors were further identified according to the expression status of VEGF, c-erbB2 and p53. The malignant potential of the ER-/VEGF+ subgroup was associated with the strong correlations of Cox-2 and c-erbB2 with VEGF. Our results indicate that this molecular classification system, based on the statistical analysis of immunohistochemical profiling, is a useful approach for tumor grouping. Some of these subgroups have a relative genetic homogeneity that may allow further study of specific genetically-controlled metabolic pathways. This approach may hold great promise in rationalizing the application of different therapeutic strategies for different subgroups of breast tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Biomarkers, Tumor / metabolism
  • Breast Neoplasms / classification
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Carcinoma, Intraductal, Noninfiltrating / classification
  • Carcinoma, Intraductal, Noninfiltrating / metabolism*
  • Carcinoma, Intraductal, Noninfiltrating / secondary
  • Female
  • Humans
  • Immunoenzyme Techniques
  • Middle Aged
  • Protein Array Analysis / methods*
  • Tissue Embedding / methods*


  • Biomarkers, Tumor