Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase
- PMID: 14561748
- PMCID: PMC7980035
- DOI: 10.1074/jbc.M310875200
Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase
Abstract
The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. In order to understand the active form and the substrate specificity of the enzyme, we have cloned, expressed, and purified SARS 3C-like proteinase. Analytic gel filtration shows a mixture of monomer and dimer at a protein concentration of 4 mg/ml and mostly monomer at 0.2 mg/ml, which correspond to the concentration used in the enzyme assays. The linear decrease of the enzymatic-specific activity with the decrease of enzyme concentration revealed that only the dimeric form is active and the dimeric interface could be targeted for structural-based drug design against SARS 3C-like proteinase. By using a high pressure liquid chromatography assay, SARS 3C-like proteinase was shown to cut the 11 peptides covering all of the 11 cleavage sites on the viral polyprotein with different efficiency. The two peptides corresponding to the two self-cleavage sites are the two with highest cleavage efficiency, whereas peptides with non-canonical residues at P2 or P1' positions react slower. The P2 position of the substrates seems to favor large hydrophobic residues. Secondary structure studies for the peptide substrates revealed that substrates with more beta-sheetlike structure tend to react fast. This study provides a basic understanding of the enzyme catalysis and a full substrate specificity spectrum for SARS 3C-like proteinase, which are helpful for structural-based inhibitor design against SARS and other coronavirus.
Figures
Similar articles
-
Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase.Curr Pharm Des. 2006;12(35):4555-64. doi: 10.2174/138161206779010396. Curr Pharm Des. 2006. PMID: 17168761 Review.
-
Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations.J Biol Chem. 2005 Jan 7;280(1):164-73. doi: 10.1074/jbc.M408211200. Epub 2004 Oct 26. J Biol Chem. 2005. PMID: 15507456 Free PMC article.
-
Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.Protein Sci. 2006 Apr;15(4):699-709. doi: 10.1110/ps.052007306. Protein Sci. 2006. PMID: 16600962 Free PMC article.
-
3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism.Biochemistry. 2004 Apr 20;43(15):4568-74. doi: 10.1021/bi036022q. Biochemistry. 2004. PMID: 15078103
-
Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors.J Biol Chem. 2004 Jun 4;279(23):24765-73. doi: 10.1074/jbc.M311744200. Epub 2004 Mar 22. J Biol Chem. 2004. PMID: 15037623 Free PMC article.
Cited by
-
Recent Progress in Torovirus Molecular Biology.Viruses. 2021 Mar 8;13(3):435. doi: 10.3390/v13030435. Viruses. 2021. PMID: 33800523 Free PMC article. Review.
-
Safety, Tolerability, and Pharmacokinetics of Intravenous Doses of PF-07304814, a Phosphate Prodrug Protease Inhibitor for the Treatment of SARS-CoV-2, in Healthy Adult Participants.Clin Pharmacol Drug Dev. 2022 Dec;11(12):1382-1393. doi: 10.1002/cpdd.1174. Epub 2022 Oct 26. Clin Pharmacol Drug Dev. 2022. PMID: 36285536 Free PMC article. Clinical Trial.
-
Evidences for the unfolding mechanism of three-dimensional domain swapping.Protein Sci. 2013 Mar;22(3):280-6. doi: 10.1002/pro.2209. Epub 2013 Jan 17. Protein Sci. 2013. PMID: 23238853 Free PMC article.
-
SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3.J Struct Biol. 2020 Sep 1;211(3):107575. doi: 10.1016/j.jsb.2020.107575. Epub 2020 Jul 10. J Struct Biol. 2020. PMID: 32653646 Free PMC article.
-
The SARS-CoV-2 main protease as drug target.Bioorg Med Chem Lett. 2020 Sep 1;30(17):127377. doi: 10.1016/j.bmcl.2020.127377. Epub 2020 Jul 2. Bioorg Med Chem Lett. 2020. PMID: 32738988 Free PMC article. Review.
References
-
- Drosten C., Gunther S., Preiser W., van der W.S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguiere A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. N. Engl. J. Med. 2003;348:1967–1976. - PubMed
-
- Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. N. Engl. J. Med. 2003;348:1953–1966. - PubMed
-
- Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Science. 2003;300:1394–1399. - PubMed
-
- Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. Science. 2003;300:1399–1404. - PubMed
Uncited references
-
- Deleted in proof
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
