A biochemical oxygen demand (BOD) sensing system based on bacterial luminescence from recombinant Escherichia coli containing lux A-E genes from Vibrio fischeri has been developed. It was possible to use frozen cells of luminescent recombinants of E. coli as the bacterial reagents for measurement. Steady bioluminescence was observed during the incubation time between 90 and 150 min in the presence of a sole carbon source such as glucose, acetate, L-glutamate and BOD standard solution (GGA solution). This disposable bacterial reagent was applied to measure and detect organic pollution due to biodegradable substances in various wastewaters. The obtained values of this study showed a similar correlation with that of the conventional method for BOD determination (BOD5). Bacterial luminescence that was visualized with an imaging system using a charge coupled device (CCD) camera and a photomulti-counter demonstrated that this method could also be used for multi-sample detection of organic pollution due to biodegradable substances by using a microtiter plate. These results suggested for successful achievement of high-though-put detection of BOD in practical.