Regulatory mechanism of Dictyostelium myosin light chain kinase A

J Biol Chem. 2004 Jan 2;279(1):42-50. doi: 10.1074/jbc.M309621200. Epub 2003 Oct 21.

Abstract

In this study, we examined the activation mechanism of Dictyostelium myosin light chain kinase A (MLCK-A) using constitutively active Ca2+/calmodulin-dependent protein kinase kinase as a surrogate MLCK-A kinase. MLCK-A was phosphorylated at Thr166 by constitutively active Ca2+/calmodulin-dependent protein kinase kinase, resulting in an approximately 140-fold increase in catalytic activity, using intact Dictyostelium myosin II. Recombinant Dictyostelium myosin II regulatory light chain and Kemptamide were also readily phosphorylated by activated MLCK-A. Mass spectrometry analysis revealed that MLCK-A expressed by Escherichia coli was autophosphorylated at Thr289 and that, subsequent to Thr166 phosphorylation, MLCK-A also underwent a slow rate of autophosphorylation at multiple Ser residues. Using site-directed mutagenesis, we show that autophosphorylation at Thr289 is required for efficient phosphorylation and activation by an upstream kinase. By performing enzyme kinetics analysis on a series of MLCK-A truncation mutants, we found that residues 283-288 function as an autoinhibitory domain and that autoinhibition is fully relieved by Thr166 phosphorylation. Simple removal of this region resulted in a significant increase in the kcat of MLCK-A; however, it did not generate maximum enzymatic activity. Together with the results of our kinetic analysis of the enzymes, these findings demonstrate that Thr166 phosphorylation of MLCK-A by an upstream kinase subsequent to autophosphorylation at Thr289 results in generation of maximum MLCK-A activity through both release of an autoinhibitory domain from its catalytic core and a further increase (15-19-fold) in the kcat of the enzyme.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Brain / enzymology
  • Caenorhabditis elegans / enzymology
  • Dictyostelium / metabolism*
  • Humans
  • Kinetics
  • Molecular Sequence Data
  • Myosin-Light-Chain Kinase / chemistry
  • Myosin-Light-Chain Kinase / genetics
  • Myosin-Light-Chain Kinase / metabolism*
  • Phosphorylation
  • Protozoan Proteins / chemistry
  • Protozoan Proteins / genetics
  • Protozoan Proteins / metabolism*
  • Rats
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / metabolism
  • Sequence Alignment
  • Sequence Homology, Amino Acid

Substances

  • Protozoan Proteins
  • Recombinant Proteins
  • MLCK-A protein, Dictyostelium discoideum
  • Myosin-Light-Chain Kinase