Patterns and processes of larval emergence in an estuarine parasite system

Biol Bull. 2003 Oct;205(2):110-20. doi: 10.2307/1543232.


Trematode parasites in intertidal estuaries experience constantly varying conditions, with the presence or absence of water potentially limiting larval transport between hosts. Given the short life spans (< or =24 h) of cercariae, emergence timing should be optimized to enhance the probability of successful transmission. In the present study, field measurements and laboratory experiments identified processes that regulate the emergence of cercariae from their first intermediate snail hosts in an intertidal marsh. Larvae emerged over species-specific temperature ranges, exclusively during daylight hours, and only when snails were submerged. The three factors operate over different temporal scales: temperature monthly, light diurnally (24-h period), and water depth tidally (12-h period). Each stimulus creates a necessary condition for the next, forming a hierarchy of environmental cues. Emergence as the tide floods would favor transport within the estuary, and light may trigger direct (downward or upward) swimming toward host habitats. Abbreviated dispersal would retain asexually reproduced cercariae within the marsh, and local mixing would diversify the gene pool of larvae encysting on subsequent hosts. In contrast to the timing of cercarial release, emergence duration was under endogenous control. Duration of emergence decreased from sunrise to sunset, perhaps in response to the diminishing lighted interval as the day progresses. Circadian rhythms that control cercarial emergence of freshwater species (including schistosomes) are often set by the activity patterns of subsequent hosts. In this estuary, however, the synchronizing agent is the tides. Together, exogenous and endogenous factors control emergence of trematode cercariae, mitigating the vagaries of an intertidal environment.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • California
  • Environment*
  • Larva / physiology
  • Metamorphosis, Biological / physiology*
  • Oceans and Seas
  • Photoperiod
  • Seasons
  • Snails / parasitology*
  • Temperature
  • Trematoda / physiology*
  • Water Movements*