Decreased coumarin 7-hydroxylase activities and CYP2A6 expression levels in humans caused by genetic polymorphism in CYP2A6 promoter region (CYP2A6*9)

Pharmacogenetics. 2003 Nov;13(11):689-95. doi: 10.1097/00008571-200311000-00005.


One of seven poor metabolizers of coumarin found in Thai subjects was previously genotyped as heterozygote for the CYP2A6*4 (whole deletion) and CYP2A6*9. Thus, we aimed to investigate the relationship between the genetic polymorphism in the TATA box of the CYP2A6 gene (CYP2A6*9), expression levels of CYP2A6 mRNA and coumarin 7-hydroxylase activities in human livers. Levels of CYP2A6 mRNA were quantified by real-time quantitative reverse transcriptase-polymerase chain reaction. The mean expression levels of CYP2A6 mRNA in individuals with CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 58%, 71% and 21% of the individuals genotyped as CYP2A6*1/*1, respectively. The mean in-vitro coumarin 7-hydroxylase activities in subjects carrying CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 41%, 71% and 12%, respectively, compared to those of the subjects judged as wild-type. Vmax values for coumarin 7-hydroxylation in the liver microsomes from human subjects with genotypes of CYP2A6*1/*1, CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 0.58, 0.26, 0.44 and 0.13 nmol/min/nmol total P450, respectively. CYP2A6 protein levels in human liver microsomes with the CYP2A6*4 and the CYP2A6*9 alleles were markedly decreased. These results suggest that the genetic polymorphism in the promoter region of the CYP2A6 gene (CYP2A6*9) reduced the expression levels of CYP2A6 mRNA and protein in human livers, resulting in the decrease of coumarin 7-hydroxylase activities. Individuals judged as CYP2A6*4/*9 were expected to be poor metabolizers, having extremely low activity of CYP2A6.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Alleles
  • Aryl Hydrocarbon Hydroxylases / metabolism*
  • Asian People
  • Cytochrome P-450 CYP2A6
  • Female
  • Gene Frequency
  • Heterozygote
  • Humans
  • Kinetics
  • Male
  • Microsomes, Liver / enzymology
  • Microsomes, Liver / metabolism*
  • Middle Aged
  • Mixed Function Oxygenases / metabolism*
  • Polymorphism, Genetic*
  • Polymorphism, Single Nucleotide
  • Promoter Regions, Genetic*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction


  • RNA, Messenger
  • Mixed Function Oxygenases
  • Aryl Hydrocarbon Hydroxylases
  • CYP2A6 protein, human
  • Cytochrome P-450 CYP2A6