Cell adhesion molecules are well-known membrane glycoproteins widely expressed during embryonic development that play a crucial role in cell division, migration and differentiation. We investigated the cell-matrix relationship using N-CAM and pan-cadherin adhesion molecules in the adriamycin-induced esophageal atresia (EA) rat model in the hope of finding a clue to the mechanisms of this unique anomaly.Time-mated pregnant Sprague-Dawley rats were given either saline or adriamycin on days 8 and 9 of gestation. Embryos were harvested on the 18th day of gestation. Esophageal specimens obtained from adriamycin-exposed embryos with (EA+) or without esophageal atresia (EA-) and from saline-exposed embryos were immunostained with N-CAM and pan-cadherin primary antisera. The esophageal specimens from control and EA- groups revealed similar immunostaining properties: weak N-CAM and pan-cadherin immunoreactivity. In contrast, the EA+ group showed intense immunoreactivity. Our study demonstrated an increased synthesis of N-CAM and pan-cadherin in the epithelial cells of the atretic esophagus and trachea. These results suggest that embryonic cell-cell and cell-matrix interactions may play a crucial role in the development of adriamycin-induced EA.