The most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), DeltaF508-CFTR, is misprocessed and subsequently degraded in the endoplasmic reticulum. Using the patch-clamp technique, we showed that co-expressions of DeltaF508-CFTR with the N-terminal CFTR truncates containing bi-arginine (RXR) retention/retrieval motifs result in a functional rescue of the DeltaF508-CFTR mutant channel in COS-1 cells. This DeltaF508-CFTR rescue process was strongly impaired when truncated CFTR constructs possessed either the DeltaF508 mutation or arginine-to-lysine mutations in RXRs. In conclusions, our data demonstrated that expression of truncated CFTR constructs could be a novel promising approach to improve maturation of DeltaF508-CFTR channels.