The synaptic connections of the narrow-field, bistratified rod amacrine cell (AII) in the inner plexiform layer (IPL) of the rabbit retina were reconstructed from electron micrographs of continuous series of thin sections. The AII amacrine cell receives a large synaptic input from the axonal endings of rod bipolar cells in the most vitreal region of the IPL (sublamina b, S5) and a smaller input from axonal endings of cone bipolar cells in the scleral region of the IPL (sublamina a, S1-S2). Amacrine input, localized at multiple levels in the IPL, equals the total number of synapses received from bipolar cells. The axonal endings of cone bipolar cells represent the major target for the chemical output of the AII amacrine cell: these synapses are established by the lobular appendages in sublamina a (S1-S2). Ganglion cell dendrites represent only 4% of the output of the AII amacrine and most of them are also postsynaptic to the cone bipolars which receive AII input. The AII amacrine is not presynaptic to other amacrine cells. Finally, the AII amacrine makes gap junctions with the axonal arborizations of cone bipolars that stratify in sublamina b (S3-S4) as well as with other AII amacrine cells in S5. Therefore, in the rabbit retina 1) the rod pathway consists of five neurons arranged in series: rod-->rod bipolar-->AII amacrine-->cone bipolar-->ganglion cell; 2) it seems unlikely that a class of ganglion cells exists that is exclusively devoted to scotopic functions. In ventral, midperipheral retina, about nine rod bipolar cells converge onto a single AII amacrine, but one of them establishes a much higher proportion of synaptic contacts than the rest. Conversely, each rod bipolar cell diverges onto four AII amacrine cells, but one of them receives the largest fraction of synapses. Thus, within the pattern of convergence and divergence suggested by population studies, preferential synaptic pathways are established.