GPCR dimerisation

Life Sci. 2003 Dec 5;74(2-3):181-8. doi: 10.1016/j.lfs.2003.09.005.


The concept that GPCRs exist and potentially function as dimers and/or higher oligomers has progressed recently from hypothesis to being widely accepted. A range of techniques has contributed to this understanding, including co-immunoprecipitation and various forms of fluorescence and bioluminescence resonance energy transfer. Although co-immunoprecipitation studies indicate the capacity of a wide range of GPCRs to form hetero-dimers as well as homo-dimers, this approach is not well suited to examine selectivity of interactions. Both bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) have been applied to the detection of GPCR dimerisation in intact cells and BRET and FRET have been used to attempt to quantitate the fraction of GPCRs present as dimers. Following heterologous expression, a considerable fraction of many GPCRs is not fully processed and is trafficked to the proteasome or lysosome for destruction. A distinct limitation of both BRET and conventional FRET approaches is that both the energy donor and energy acceptor tags are inside the cell. Time-resolved FRET employing N-terminally epitope-tagged GPCRs has been used to allow detection only of dimers trafficked successfully to the cell surface. Reports indicating the appearance of distinct pharmacology and function following co-expression of two GPCRs are fascinating. Much remains to be examined, however, on the specificity and mechanisms of these interactions and to develop techniques to monitor the function only of hetero-dimers when the corresponding homo-dimers must also be present.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Fluorescence Resonance Energy Transfer
  • Humans
  • Receptors, G-Protein-Coupled / chemistry*
  • Receptors, G-Protein-Coupled / physiology


  • Receptors, G-Protein-Coupled