Adenosine binding sites at S-adenosylhomocysteine hydrolase are controlled by the NAD+/NADH ratio of the enzyme

Biochem Pharmacol. 2003 Dec 1;66(11):2117-23. doi: 10.1016/s0006-2952(03)00581-1.

Abstract

S-Adenosylhomocysteine hydrolase (AdoHcy hydrolase) catalyzes the reversible hydrolysis of S-adenosylhomocysteine (AdoHcy) to adenosine (Ado) and homocysteine. On the basis of the kinetics of Ado binding to AdoHcy hydrolase we have shown that AdoHcy hydrolase binds Ado with different affinities [Kidney Blood Press. Res. 19 (1996) 100]. Since AdoHcy hydrolase in its totally reduced form binds Ado with high affinity we determined in the present study the Ado binding characteristics of purified AdoHcy hydrolase from bovine kidney (native form) and of reconstituted forms with defined NAD(+)/NADH ratios. AdoHcy hydrolase in its native form and at a ratio of 50% NAD(+) and 50% NADH exhibits two binding sites for Ado with a K(D1) of 9.2+/-0.6 nmol/L and a K(D2) of 1.4+/-0.1 micromol/L, respectively. Binding of Ado to AdoHcy hydrolase in its NADH form and in its NAD(+) form exhibits only one binding site with high affinity 48.3+/-2.7 nmol/L for the NADH form and with a low affinity of 4.9+/-0.3 micromol/L for the NAD(+) form. To identify these two Ado binding sites, AdoHcy hydrolase was covalently modified with [2-3H]-8-azido-Ado. After irradiation of the native AdoHcy hydrolase two different photolabeled peptides were isolated and identified as Asp(307)-Val(325) and Tyr(379)-Thr(410). When the reconstituted AdoHcy hydrolase in its NADH and in its NAD(+) form was irradiated with [2-3H]-8-azido-Ado only one peptide was identified as Asn(312)-Lys(318) from the NADH form and as Asp(391)-Ala(396) from the NAD(+) form. Based on the crystallographic data, the labeled peptide Asp(391)-Ala(396) (low affinity binding site), appears to belong to the catalytic domain of AdoHcy hydrolase, whereas the labeled peptide, identified as Asn(312)-Lys(318) (high affinity binding site), is located in the NAD domain. In conclusion, our data show that AdoHcy hydrolase has two different Ado binding sites which are dependent upon the enzyme-bound NAD(+)/NADH ratios.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / metabolism*
  • Adenosylhomocysteinase / metabolism*
  • Amino Acid Sequence / physiology
  • Animals
  • Binding Sites / physiology
  • Cattle
  • Molecular Sequence Data
  • NAD / metabolism*
  • Protein Binding / physiology

Substances

  • NAD
  • Adenosylhomocysteinase
  • Adenosine