Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media

Appl Spectrosc. 2003 Feb;57(2):208-15. doi: 10.1366/000370203321535132.

Abstract

A general approach to detecting nucleic acid sequences in homogeneous media by means of steady-state fluorescence measurements is proposed. The methodology combines the use of a fluorescence-labeled single-strand DNA model probe, the complementary single-strand DNA target, and a DNA intercalator. The probe was fluorescein labeled to a spacer arm at the N4 position of the cytosine amino groups in polyribocytidylic acid (5'), poly(C), which acts as a model DNA probe. The complementary strand was polyriboinosinic acid (5'), poly(I), as a model of the target, and the energy transfer acceptor was an intercalator, either ethidium bromide or ethidium homodimer. In previous papers we have shown that the fluorescence intensity of the fluorescein label decreases when labeled poly(C) hybridizes with poly(I), and this fluorescence quenching can be used to detect DNA hybridization or renaturation in homogeneous media. In this paper we demonstrate that fluorescence resonance energy transfer (FRET) between fluorescein labeled to poly(C) and an intercalator agent takes place when single-stranded poly(C) hybridizes with poly(I), and we show how the fluorescence energy transfer further decreases the steady-state fluorescence intensity of the label, thus increasing the detection limit of the method. The main aim of this work was to develop a truly homogeneous detection system for specific nucleic acid hybridization in solution using steady-state fluorescence and FRET, but with the advantage of only having to label the probe with the energy donor since the energy acceptor is intercalated spontaneously. Moreover, the site label is not critical and can be labeled randomly in the DNA strand. Thus, the method is simpler than those published previously based on FRET. The experiments were carried out in both direct and competitive formats.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Base Sequence
  • DNA Probes*
  • Ethidium / analogs & derivatives*
  • Ethidium / chemistry*
  • Fluorescein*
  • Fluorescence Resonance Energy Transfer / methods*
  • In Situ Hybridization, Fluorescence / methods*
  • Intercalating Agents / chemistry
  • Molecular Sequence Data
  • Poly I-C / chemistry*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Sequence Analysis, DNA / methods*
  • Solutions
  • Staining and Labeling / methods
  • Temperature

Substances

  • DNA Probes
  • Intercalating Agents
  • Solutions
  • ethidium homodimer
  • Ethidium
  • Poly I-C
  • Fluorescein