Separation methods for the indirect estimation of the octanol-water partition coefficient (logP) are reviewed with an emphasis on high throughput methods with a wide application range. The solvation parameter model is used to identify suitable separation systems for estimating logP in an efficient manner that negates the need for empirical trial and error experiments. With a few exceptions, systems based on reversed-phase chromatography employing chemically bonded phases are shown to be unsuitable for estimating logP for compounds of diverse structure. This is because the fundamental properties responsible for chromatographic retention tend to be different to those responsible for partition between octanol and water, especially the contribution from hydrogen bonding interactions. On the other hand, retention in several micellar and microemulsion electrokinetic chromatography systems is shown to be highly correlated with the octanol-water partition coefficient. These systems are suitable for the rapid, high throughput determination of logP for neutral, weakly acidic, and weakly basic compounds. For compounds with a permanent charge, electrophoretic migration and electrostatic interactions with the stationary phase results in inaccurate estimation of partition coefficients. The experimental determination of solute descriptors offers an alternative approach for estimating logP, and other biopartitioning properties. A distinct advantage of this approach is that once the solute descriptors are known, solute properties can be estimated for any distribution or transport system for which a solvation parameter model has been established.