Ouabain increases sarcoplasmic reticulum calcium release in cardiac myocytes

J Pharmacol Exp Ther. 2004 Mar;308(3):1181-90. doi: 10.1124/jpet.103.060004. Epub 2003 Nov 21.


The inotropic and toxic effects of cardiac glycosides are thought to be related to their ability to inhibit the Na,K-ATPase. We examined the effects of ouabain and its analogs on sarcoplasmic reticulum (SR) Ca(2+) release in intact cat ventricular myocytes under Na(+)-free conditions and in myocytes in which the sarcolemma was permeabilized using saponin so that cytoplasmic ionic composition was fixed by the bath solutions. We also compared ouabain actions in cat myocytes to those in rat myocytes because the latter is considered to be a glycoside-insensitive species. In intact cat myocytes (Na(+)-free conditions), spontaneous Ca(2+) sparks were prolonged and frequency, amplitude and width were reduced by exposure to ouabain (3 microM). Nearly identical results were obtained with its analogs dihydroouabain or ouabagenin (10 microM). The frequency of spontaneous Ca(2+) waves was also reduced by ouabain. In contrast, ouabain (100 microM) had negligible effects on sparks and waves in rat myocytes in Na(+)-free conditions, consistent with the decreased sensitivity to cardiac glycosides observed in this species. In cat myocytes permeabilized with saponin (0.01%), ouabain (>or=50 nM) decreased spark frequency and increased background SR Ca(2+) leak only when the SR was well loaded (free [Ca(2+)] = 275 nM) and not when SR load was low (free [Ca(2+)] = 50 nM). Similar effects were observed in rat myocytes only when ouabain concentration was 1 microM. These results suggest that the cellular actions of cardiac glycosides may include a direct effect on SR Ca(2+) release, possibly through activation of SR Ca(2+) release channels (ryanodine receptors). In addition, these results are consistent with the idea that direct activation of SR Ca(2+) release is dependent on the extent of SR Ca(2+) load, with elevated load increasing sensitivity of the channel release mechanism to activation by glycoside.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / metabolism
  • Cats
  • Cells, Cultured
  • Glycosides / metabolism
  • Heart / drug effects
  • Myocytes, Cardiac / drug effects*
  • Myocytes, Cardiac / metabolism
  • Ouabain / analogs & derivatives*
  • Ouabain / pharmacology*
  • Rats
  • Sarcoplasmic Reticulum / drug effects*
  • Sarcoplasmic Reticulum / metabolism
  • Sodium / metabolism


  • Calcium Channels
  • Glycosides
  • dihydroouabain
  • Ouabain
  • Sodium
  • ouabagenin
  • Calcium