Apoptosis in human atherosclerotic plaques

Apoptosis. 1999 Feb;4(1):5-10. doi: 10.1023/a:1009645730270.

Abstract

Intimal cell death has been a recognized feature of advanced atherosclerotic disease. With the advent of DNA in situ end labelling and/or ultrastructural techniques, recent findings suggest that cells of an atheroma undergo programmed cell death or apoptosis. The pathophysiologic relevance of apoptosis in atherosclerotic disease is debatable. Apoptotic cell death may influence lesion progression and thus reduce overall plaque burden. Alternatively, apoptosis may prove a means of quenching the inflammation, converting cellular-rich lesions to so-called 'stable' fibrous hypocellular plaques or conversely weaken the fibrous cap causing plaque rupture, a major cause of acute coronary syndromes. Apoptotic cells within plaques are typically macrophages, smooth muscle cells and T-cells and the frequency of death varies in the different regions of the lesion. The precise signalling pathways of apoptosis in plaques are unknown. There is however, some evidence that production of immune cytokines may promote apoptosis through activation of the Fas ligand-mediated death pathway. Genetic signals that regulate apoptosis in the atheroma, at least in smooth muscle cells, may involve the tumour suppressor genes p105RB and p53. Further studies as to the relevance of apoptosis in acute coronary syndromes and potential mechanisms are emerging.