Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum

Mol Microbiol. 2004 Jan;51(1):63-72. doi: 10.1046/j.1365-2958.2003.03826.x.


The Gram-negative bacterium Legionella pneumophila is a facultative intracellular pathogen of free-living amoebae and mammalian phagocytes. L. pneumophila is engulfed in phagosomes that initially avoid fusion with lysosomes. The phagosome associates with endoplasmic reticulum (ER) and mitochondria and eventually resembles ER. The morphological similarity of the replication vacuole to autophagosomes, and enhanced bacterial replication in response to macroautophagy-inducing starvation, led to the hypothesis that L. pneumophila infection requires macroautophagy. As L. pneumophila replicates in Dictyostelium discoideum, and macroautophagy genes have been identified and mutated in D. discoideum, we have taken a genetic and cell biological approach to evaluate the relationship between host macroautophagy and intracellular replication of L. pneumophila. Mutation of the apg1, apg5, apg6, apg7 and apg8 genes produced typical macroautophagy defects, including reduced bulk protein degradation and cell viability during starvation. We show that L. pneumophila replicates normally in D. discoideum macroautophagy mutants and produces replication vacuoles that are morphologically indistinguishable from those in wild-type D. discoideum. Furthermore, a green fluorescent protein (GFP)-tagged marker of autophagosomes, Apg8, does not systematically co-localize with DsRed-labelled L. pneumophila. We conclude that macroautophagy is dispensable for L. pneumophila intracellular replication in D. discoideum.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autophagy / physiology*
  • Cell Division
  • Dictyostelium / microbiology*
  • Dictyostelium / ultrastructure
  • Endoplasmic Reticulum / microbiology
  • Kinetics
  • Legionella pneumophila / cytology
  • Legionella pneumophila / pathogenicity*
  • Microscopy, Fluorescence
  • Vacuoles / microbiology
  • Vacuoles / ultrastructure