Objective: To determine the spectrum, frequency, and ethnic-specificity of channel variants in the potassium channel genes implicated in congenital long QT syndrome (LQTS) among healthy subjects.
Subjects and methods: Genomic DNA from 744 apparently healthy individuals-305 black, 187 white, 134 Asian, and 118 Hispanic--was subject to a comprehensive mutational analysis of the 4 LQTS-causing potassium channel genes: KCNQ1 (LQT1), KCNH2 (LQT2), KCNE1 (LQT5), and KCNE2 (LQT6).
Results: Overall, 49 distinct amino acid-altering variants (36 novel) were identified: KCNQ1 (n = 16), KCNH2 (n = 25),KCNE1 (n = 5), and KCNE2 (n = 3). More than half of these variants (26/49) were found exclusively in black subjects. The known K897T-HERG and the G38S-min K common polymorphisms were identified in all 4 ethnic groups. Excluding these 2 common polymorphisms, 25% of black subjects had at least 1 nonsynonymous potassium channel variant compared with 14% of white subjects (P < .01).
Conclusions: To our knowledge, this study represents the first comprehensive determination of the frequency and spectrum of cardiac channel variants found among healthy subjects from 4 major ethnic groups. Defining the population burden of genetic variants in these critical cardiac ion channels is crucial for proper interpretation of genetic test results of individuals at risk for LQTS. This compendium provides a resource for epidemiological and functional investigation of variant effects on the repolarization properties of cardiac tissues, including susceptibility to lethal cardiac arrhythmias.