Markov chain Monte Carlo without likelihoods
- PMID: 14663152
- PMCID: PMC307566
- DOI: 10.1073/pnas.0306899100
Markov chain Monte Carlo without likelihoods
Abstract
Many stochastic simulation approaches for generating observations from a posterior distribution depend on knowing a likelihood function. However, for many complex probability models, such likelihoods are either impossible or computationally prohibitive to obtain. Here we present a Markov chain Monte Carlo method for generating observations from a posterior distribution without the use of likelihoods. It can also be used in frequentist applications, in particular for maximum-likelihood estimation. The approach is illustrated by an example of ancestral inference in population genetics. A number of open problems are highlighted in the discussion.
Similar articles
-
Bayesian experimental design for models with intractable likelihoods.Biometrics. 2013 Dec;69(4):937-48. doi: 10.1111/biom.12081. Epub 2013 Oct 16. Biometrics. 2013. PMID: 24131221
-
Bayesian restoration of a hidden Markov chain with applications to DNA sequencing.J Comput Biol. 1999 Summer;6(2):261-77. doi: 10.1089/cmb.1999.6.261. J Comput Biol. 1999. PMID: 10421527
-
Exact likelihood-free Markov chain Monte Carlo for elliptically contoured distributions.Stat Appl Genet Mol Biol. 2015 Aug;14(4):317-32. doi: 10.1515/sagmb-2014-0063. Stat Appl Genet Mol Biol. 2015. PMID: 26167984 Free PMC article.
-
Statistical inference for stochastic simulation models--theory and application.Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17. Ecol Lett. 2011. PMID: 21679289 Review.
-
A Markov chain Monte Carlo strategy for sampling from the joint posterior distribution of pedigrees and population parameters under a Fisher-Wright model with partial selfing.Theor Popul Biol. 2007 Nov;72(3):436-58. doi: 10.1016/j.tpb.2007.03.002. Epub 2007 Mar 12. Theor Popul Biol. 2007. PMID: 17448511 Review.
Cited by
-
Calibration of agent based models for monophasic and biphasic tumour growth using approximate Bayesian computation.J Math Biol. 2024 Feb 15;88(3):28. doi: 10.1007/s00285-024-02045-4. J Math Biol. 2024. PMID: 38358410 Free PMC article.
-
Designing optimal behavioral experiments using machine learning.Elife. 2024 Jan 23;13:e86224. doi: 10.7554/eLife.86224. Elife. 2024. PMID: 38261382 Free PMC article.
-
Efficient design of synthetic gene circuits under cell-to-cell variability.BMC Bioinformatics. 2023 Dec 7;24(Suppl 1):460. doi: 10.1186/s12859-023-05538-z. BMC Bioinformatics. 2023. PMID: 38062373 Free PMC article.
-
Inferring delays in partially observed gene regulation processes.Bioinformatics. 2023 Nov 1;39(11):btad670. doi: 10.1093/bioinformatics/btad670. Bioinformatics. 2023. PMID: 37935426 Free PMC article.
-
Growth Dynamics of Ductal Carcinoma in Situ Recapitulate Normal Breast Development.bioRxiv [Preprint]. 2023 Oct 2:2023.10.01.560370. doi: 10.1101/2023.10.01.560370. bioRxiv. 2023. PMID: 37873488 Free PMC article. Preprint.
References
-
- Ripley, B. D. (1982) Stochastic Simulation (Wiley, New York).
-
- Kingman, J. F. C. (1982) J. Appl. Prob. 19A, 27–43.
-
- Nordborg, M. (2001) in Handbook of Statistical Genetics, eds. Balding, D. J., Bishop, M. J. & Cannings, C. (Wiley, New York), pp. 179–208.
-
- Stephens, M. (2001) in Handbook of Statistical Genetics, eds. Balding, D. J., Bishop, M. J. & Cannings, C. (Wiley, New York), pp. 213–238.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
