Magnetic resonance imaging of patellofemoral kinematics with weight-bearing

J Bone Joint Surg Am. 2003 Dec;85(12):2419-24. doi: 10.2106/00004623-200312000-00021.


Background: Previous studies of the patellofemoral joint have been limited by the use of invasive techniques, measurements under non-weight-bearing conditions, cadaveric specimens, or computerized models. It has been shown that soft tissue and bone can be accurately quantified with magnetic resonance imaging. The present study was designed to define the relationship between the patellofemoral contact area and patellofemoral kinematics in vivo.

Methods: Ten subjects with clinically normal knee joints were scanned with high-resolution magnetic resonance imaging while they pushed a constant weight (133 N) on the foot-plate of a custom-designed load-bearing apparatus. Images were obtained at five positions of flexion between -10 degrees and 60 degrees. Three-dimensional reconstructions were used to measure the patellofemoral cartilage contact area, patellar centroid, patellar medial and inferior translation, patellar medial and inferior tilt, and patellar varus-valgus rotation. All translation and area measurements were normalized on the basis of the interepicondylar distance. Random-effects models of quadratic regressions were used to evaluate the data.

Results: The mean contact area ranged from 126 mm(2) in extension to 560 mm(2) at 60 degrees of flexion. The patella translated inferiorly to a maximum distance of 34 mm at 60 degrees of flexion and translated medially to a maximum distance of 3.2 mm at 30 degrees of flexion before returning to nearly 0 mm at 60 degrees of flexion. The patella tilted inferiorly to a mean of nearly 35 degrees at 60 degrees of flexion and medially to a maximum of 4.2 degrees at 30 degrees of flexion. By 60 degrees of flexion, the centroid of the contact area had shifted to an inferior and posterior maximum of 20 and 10 mm, respectively.

Conclusions: We found that lateral patellar subluxation and tilt occurred in these normal knees at full extension and the patella was reduced into the trochlear groove at 30 degrees of flexion. Therefore, we believe that lateral patellar tilt and subluxation observed during arthroscopy of the extended knee may not represent a pathological condition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Biomechanical Phenomena*
  • Female
  • Femur / anatomy & histology
  • Femur / physiology
  • Humans
  • Knee Joint / anatomy & histology*
  • Knee Joint / physiology
  • Magnetic Resonance Imaging*
  • Male
  • Patella / anatomy & histology
  • Patella / physiology
  • Range of Motion, Articular / physiology
  • Reference Values
  • Sampling Studies
  • Sensitivity and Specificity
  • Weight-Bearing