Parallel colour-opponent pathways to primary visual cortex
- PMID: 14668866
- DOI: 10.1038/nature02167
Parallel colour-opponent pathways to primary visual cortex
Abstract
The trichromatic primate retina parses the colour content of a visual scene into 'red/green' and 'blue/yellow' representations. Cortical circuits must combine the information encoded in these colour-opponent signals to reconstruct the full range of perceived colours. Red/green and blue/yellow inputs are relayed by the lateral geniculate nucleus (LGN) of thalamus to primary visual cortex (V1), so understanding how cortical circuits transform these signals requires understanding how LGN inputs to V1 are organized. Here we report direct recordings from LGN afferent axons in muscimol-inactivated V1. We found that blue/yellow afferents terminated exclusively in superficial cortical layers 3B and 4A, whereas red/green afferents were encountered only in deeper cortex, in lower layer 4C. We also describe a distinct cortical target for 'blue-OFF' cells, whose afferents terminated in layer 4A and seemed patchy in organization. The more common 'blue-ON' afferents were found in 4A as well as lower layer 2/3. Chromatic information is thus conveyed to V1 by parallel, anatomically segregated colour-opponent systems, to be combined at a later stage of the colour circuit.
Similar articles
-
Visual spatial summation in macaque geniculocortical afferents.J Neurophysiol. 2006 Dec;96(6):3474-84. doi: 10.1152/jn.00734.2006. Epub 2006 Aug 23. J Neurophysiol. 2006. PMID: 16928793
-
Segregation of short-wavelength sensitive ("blue") cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets.Vision Res. 2008 Nov;48(26):2604-14. doi: 10.1016/j.visres.2008.02.017. Epub 2008 Apr 7. Vision Res. 2008. PMID: 18397798
-
Temporal dynamics of chromatic tuning in macaque primary visual cortex.Nature. 1998 Oct 29;395(6705):896-900. doi: 10.1038/27666. Nature. 1998. PMID: 9804422
-
The dynamics of visual responses in the primary visual cortex.Prog Brain Res. 2007;165:21-32. doi: 10.1016/S0079-6123(06)65003-6. Prog Brain Res. 2007. PMID: 17925238 Review.
-
Functional cell classes and functional architecture in the early visual system of a highly visual rodent.Prog Brain Res. 2005;149:127-45. doi: 10.1016/S0079-6123(05)49010-X. Prog Brain Res. 2005. PMID: 16226581 Review.
Cited by
-
V1 mechanisms underlying chromatic contrast detection.J Neurophysiol. 2013 May;109(10):2483-94. doi: 10.1152/jn.00671.2012. Epub 2013 Feb 27. J Neurophysiol. 2013. PMID: 23446689 Free PMC article.
-
Hue maps in primate striate cortex.Neuroimage. 2007 Apr 1;35(2):771-86. doi: 10.1016/j.neuroimage.2006.11.059. Epub 2006 Dec 22. Neuroimage. 2007. PMID: 17276087 Free PMC article.
-
Corticogeniculate feedback and visual processing in the primate.J Physiol. 2011 Jan 1;589(Pt 1):33-40. doi: 10.1113/jphysiol.2010.193599. Epub 2010 Aug 19. J Physiol. 2011. PMID: 20724361 Free PMC article. Review.
-
Slow intrinsic rhythm in the koniocellular visual pathway.Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14659-63. doi: 10.1073/pnas.1108004108. Epub 2011 Aug 15. Proc Natl Acad Sci U S A. 2011. PMID: 21844334 Free PMC article.
-
Spatial Organization of Chromatic Pathways in the Mouse Dorsal Lateral Geniculate Nucleus.J Neurosci. 2017 Feb 1;37(5):1102-1116. doi: 10.1523/JNEUROSCI.1742-16.2016. Epub 2016 Dec 16. J Neurosci. 2017. PMID: 27986926 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
