The stop-signal task measures the ability to inhibit a response that has already been initiated, that is, the ability to stop. Imaging studies have implicated frontostriatal circuitry in the mediation of this form of response control. The authors report inhibition functions of normal rats and those with medial striatal damage performing the stop-signal task. Excitotoxic lesions of the medial striatum produced significant deficits on task performance, including increased omissions on the go task and flattened inhibition function, possibly as a result of increased reaction-time mean and variability. Medial striatal lesions also significantly slowed stop-signal reaction time. Subsequent treatment with d-amphetamine removed (0.3 mg/kg) or exacerbated (1.0 mg/kg) this deficit.
(c) 2003 APA