Considerable evidence from both animal and human subject research supports the hypothesis that the amygdala, when activated by emotional arousal, modulates memory storage processes in other brain regions. By this hypothesis, changes in the functional interactions of the amygdala with other brain regions during emotional conditions should underlie, at least in part, enhanced memory for emotional material. Here we examined the influence of the human amygdala on other brain regions under emotional and nonemotional learning conditions using structural equation modeling (SEqM). Eleven male subjects received two PET scans for regional cerebral glucose metabolism-one scan while viewing a series of emotionally provocative (negative) film clips and a second scan while viewing a series of more emotionally neutral film clips. Enhanced activity in the right amygdala was related to enhanced memory for the emotional films. To identify potential candidate voxels for SEqM, the functional connectivity of the maximally activated voxel within the right amygdala was investigated using partial least squares. A subset of regions identified by this analysis showing differences functional connectivity with the amygdala between the emotional versus neutral film conditions were then submitted to SEqM, which revealed significantly increased amygdala influences on the ipsilateral parahippocampal gyrus and ventrolateral prefrontal cortex during the emotional relative to the neutral film viewing condition. These findings support the view that increased influences from the amygdala, presumably reflecting its memory-modulation function, occur during emotionally arousing learning situations.