Fate of newborn dentate granule cells after early life status epilepticus

Epilepsia. 2004 Jan;45(1):13-9. doi: 10.1111/j.0013-9580.2004.23903.x.


Purpose: To determine the fate of newborn dentate granule cells (DGCs) after lithium-pilocarpine-induced status epilepticus (SE) in an immature rat.

Methods: Postnatal day 20 (P20) rats were injected with lithium and pilocarpine to induce SE, and then with bromodeoxyuridine (BrdU) 4, 6, and 8 days later (P24, 26, and 28), and killed 1 day (P29), 1 week (P34), and 3 weeks (P50) after the last dose of BrdU for cell counts. Immunohistochemistry and TUNEL staining were performed to assess the fate of newborn DGCs.

Results: Pilocarpine-treated animals had significantly more BrdU-labeled DGCs than did littermate controls at all times. The day after the final BrdU injection (P29), sixfold more cells were found in pilocarpine-treated animals than in controls, which was reduced to threefold, 3 weeks later. A decrease in the BrdU-labeled cell density was noted from P29 to P50 in the control and pilocarpine-treated animals. Evidence of DGC cell death was seen in pilocarpine and control animals, with threefold more TUNEL-positive cells in the pilocarpine-treated than in the control animals at P29. The surviving newborn DGCs became mature neurons; expressing the neuronal marker NeuN in both control and pilocarpine-treated animals.

Conclusions: These findings suggest that SE during postnatal development increases the birth and death of DGCs. A subset of the newborn DGCs survive and mature into dentate granule neurons, resulting in an increased population of immature DGCs after SE that may affect hippocampal physiology.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Cell Count / methods
  • Dentate Gyrus / growth & development*
  • Dentate Gyrus / pathology*
  • Pilocarpine / toxicity
  • Rats
  • Status Epilepticus / chemically induced
  • Status Epilepticus / pathology*


  • Pilocarpine